Archivo de la etiqueta: teoría

Análisis estadísticos usando el método de Monte Carlo (y III)

imagesCon esta entrada cerramos el capítulo dedicado al análisis de Monte Carlo. En las dos entradas anteriores vimos cómo se podía usar éste método para analizar los eventos que pueden ocurrir en un dispositivo electrónico, sino también lo que sucede cuando tenemos variables correladas y cuando sometemos al circuito a un ajuste posproducción. Estos análisis son estimables, puesto que nos permiten conocer previamente el funcionamiento de nuestro circuito y tomar decisiones acerca del diseño, elegir las topologías y componentes adecuados y realizar un primer diseño en el que se optimice al máximo el comportamiento del nuestro circuito. En esta entrada vamos a ver un ejemplo, incluyendo un factor que suele ser importante y que tampoco se suele tener en cuenta en las simulaciones, y que es el análisis térmico. En este caso, utilizaremos un amplificador de potencia diseñado para trabajar en conmutación, que alimenta a una carga. El objetivo es encontrar el componente más sensible en el amplificador y poder elegir la topología o componente adecuados para que el circuito siga funcionando en todas las condiciones definidas.

Hemos visto lo útil que puede llegar a ser el análisis de Monte Carlo para elegir topologías y componentes, e incluso para definir el ajuste que tenemos que hacer en el caso de que se produzca defectivo durante un proceso de fabricación. Este análisis reduce el tiempo de desarrollo físico, porque proporciona de antemano una información importante de cómo se va a comportar nuestro diseño, antes de montarlo y evaluarlo. No obstante, hay que llegar más allá, rizando el rizo, y añadiendo el comportamiento térmico.

Los dispositivos electrónicos están no sólo sometidos a variaciones de valores nominales, debidas a su estructura física, sino que también presentan variaciones térmicas en función de la temperatura a la que estén sometidos en su funcionamiento. Los dispositivos que más suelen sufrir estas variaciones térmicas suelen ser aquellos que disipan elevadas cantidades de potencia, como las fuentes de alimentación, los microprocesadores y los amplificadores. Las variaciones térmicas desgastan el componente y comprometen su vida útil, reduciendo su vida media cuando trabajan al límite. Si hacemos estos análisis previamente, podemos marcar las pautas para lograr el mejor funcionamiento posible y obtener un diseño que garantice una vida media suficiente.

Estudio sobre un amplificador de potencia

A continuación vamos a estudiar el efecto producido sobre un amplificador de potencia en clase E, como el de la figura.

Amplificador clase E con MOSFET

Amplificador clase E con MOSFET

Este amplificador proporciona a una carga de 6+j⋅40Ω, a 1,5MHz, una potencia de AC de 23W, con una eficiencia del 88% sobre la potencia DC entregada por la fuente de alimentación. El MOSFET, que es el elemento que más se calienta cuando está disipando la potencia de conmutación, que es del orden de 2,5W, es el elemento más crítico del sistema, ya que hay que garantizar una extracción del calor que haga que su unión no se rompa por superar la temperatura de unión. El valor máximo que puede alcanzar dicha temperatura es 175ºC, pero se establece una temperatura de seguridad de 150ºC. Por tanto, el diseño realizado debe de ser capaz de soportar cualquier variación de potencia AC que pueda superar la temperatura máxima, no sólo en condiciones normales (a temperatura ambiente de 25ºC), sino incluyendo las variaciones que se puedan producir en el consumo del dispositivo activo debido a las tolerancias de los componentes.

En este circuito, los componentes más críticos, aparte de la dispersión que presenta el propio MOSFET, son los componentes pasivos. Estos componentes forman parte de la red de adaptación, que transmite la máxima energía desde la alimentación a la carga y provocan una variación en la respuesta del drenador que influye en su consumo. Siendo potencias considerables, con valores superiores a 10W, la variación de carga provocará variaciones importantes en la potencia disipada en el MOSFET y su estudio nos mostrará las necesidades para la extracción del calor generado en el MOSFET por efecto Joule.

Análisis estadístico en condiciones normales

Lo primero que tenemos es que analizar el circuito en condiciones normales de laboratorio (25ºC, 760mmHg, 50-70% de humedad relativa) y ver las variaciones que presenta, sólo por tolerancias. Consideramos tolerancias gaussianas de ±5% en valores límite, y analizamos exclusivamente las tolerancias en estas condiciones, para un 500 eventos. De esta manera podemos ver cómo afectan los componentes a la respuesta del circuito a través de la siguiente gráfica

Potencia

Potencia de DC y potencia en la carga, frente a número de eventos

El histograma azul representa la potencia de DC suministrada por la carga, cuyo valor central máximo es de 26,4W, mientras que el histograma rojo es la potencia transferida a la carga, cuyo valor central máximo es de 23,2W. Esto representa un 87,9% de eficiencia en la entrega de potencia. La desviación estándar de la potencia de carga es ±1,6%, lo que significa una tolerancia de ±6,5% en los valores límite. Bajo estas condiciones, podemos representar la potencia disipada del MOSFET, que se puede ver en la siguiente gráfica

Potencia disipada en el MOSFET vs. número de eventos

Potencia disipada en el MOSFET, frente al número de eventos

donde obtenemos una potencia media de 2,9W y una desviación estándar de 1,2W. Esto significa que la potencia máxima puede llegar a ser del orden de 7,8W.

Si calculamos con estos valores la diferencia entre la temperatura de la unión y la ambiente, teniendo en cuenta que las resistencias térmicas Rth-JC=1,7K/W y Rth-CH=0,7K/W, y usando un disipador con una resistencia térmica en condiciones de ventilación no forzada de Rth-HA=10K/W, se puede obtener, para una Tamb=25ºC

T_j=25+7,7 \cdot (0,5+1,7+10)=118,95^oC

Por tanto, a 25ºC, con una refrigeración no forzada, la temperatura de la unión está a 118,95ºC en el valor límite de potencia consumida por el MOSFET, proporcionándonos un margen suficiente sobre los 150ºC máximos a los que la unión se rompe.

Análisis estadístico para tres temperaturas

El análisis anterior nos garantiza un correcto funcionamiento en condiciones normales, pero, ¿qué ocurre cuando subimos o bajamos la temperatura? Vamos a analizar bajo tres condiciones de temperatura: 0ºC, 25ºC y 50ºC, y para representarlo usaremos un histograma multidimensional, en el que agruparemos todos los eventos sin discernir temperaturas. De este modo obtenemos

Potencia de DC y potencia en la carga, frente a número de eventos y temperatura

Potencia de DC y potencia en la carga, frente a número de eventos y temperatura

donde la potencia media entregada a la carga, en todas las condiciones, es 22,6W, para todas las condiciones térmicas, y la eficiencia media es del 86,6%, cubriendo el rango de temperaturas entre 0ºC y 50ºC.

Analizando ahora la potencia disipada por el MOSFET, en las mismas condiciones

temp_mos_power

Potencia disipada en el MOSFET, frente al número de eventos y la temperatura

donde calculando el valor medio, se obtiene 2,9W, con un máximo de 7,8W. Estos valores, similares al calculado anteriormente, muestran que la máxima temperatura de la unión va a ser 143,95ºC, a 7ºC de la temperatura máxima de seguridad de 150ºC, y por tanto a 32ºC de la temperatura máxima de la unión.

Por tanto, podemos concluir del análisis que el circuito diseñado, bajo las condiciones de temperatura ambiente de 0ºC a 50ºC, y siempre con un disipador con una resistencia térmica en ventilación no forzada de Rth-HA=10K/W, presentará un funcionamiento óptimo para el rango de potencia de carga.

CONCLUSIÓN

Con esta entrada finalizamos el capítulo dedicado al análisis usando el método de Monte Carlo. Con los análisis realizados, hemos cubierto la optimización de características a través de diferentes topologías, el ajuste posproducción en un proceso de montaje industrial y el análisis térmico para comprobar los límites de seguridad en los que trabaja un circuito de potencia. No obstante, el método proporciona muchas más posibilidades que se pueden explorar a partir de estos sencillos experimentos.

REFERENCIAS

  1. Castillo Ron, Enrique, “Introducción a la Estadística Aplicada”, Santander, NORAY, 1978, ISBN 84-300-0021-6.
  2. Peña Sánchez de Rivera, Daniel, “Fundamentos de Estadística”, Madrid,  Alianza Editorial, 2001, ISBN 84-206-8696-4.
  3. Kroese, Dirk P., y otros, “Why the Monte Carlo method is so important today”, 2014, WIREs Comp Stat, Vol. 6, págs. 386-392, DOI: 10.1002/wics.1314.

Análisis estadísticos usando el método de Monte Carlo (II)

Art02_fig01En la anterior entrada mostramos con una serie de ejemplos simples cómo funciona el método de Monte Carlo para realizar análisis estadísticos. En esta entrada vamos a profundizar un poco más, haciendo un análisis estadístico más profundo sobre un sistema algo más complejo, analizando una serie de variables de salida y estudiando sus resultados desde una serie de ópticas que resultarán bastante útiles. La ventaja que tiene la simulación es que podemos realizar una generación aleatoria de variables, y además, podemos establecer una correlación de esas variables para conseguir distintos efectos al analizar el funcionamiento de un sistema. Así, cualquier sistema no sólo se puede analizar estadísticamente mediante una generación aleatoria de entradas, sino que podemos vincular esa generación aleatoria a análisis de lotes o fallos en la producción, así como su recuperación post-producción.

Los circuitos que vimos en la anterior entrada eran circuitos muy sencillos que permitían ver cómo funciona la asignación de variables aleatorias y el resultado obtenido cuando estas variables aleatorias forman parte de un sistema más complejo. Con este análisis, podíamos comprobar un funcionamiento y hasta proponer correcciones que, por sí solas, limitasen las variaciones estadísticas del sistema final.

En este caso, vamos a estudiar el efecto dispersivo que tienen las tolerancias sobre uno de los circuitos más difíciles de conseguir su funcionamiento de forma estable: el filtro electrónico. Partiremos de un filtro electrónico de tipo paso banda, sintonizado a una determinada frecuencia y con una anchura de banda de paso y rechazo determinadas, y realizaremos varios análisis estadísticos sobre el mismo, para comprobar su respuesta cuando se somete a las tolerancias de los componentes.

DISEÑO DEL FILTRO PASO BANDA

Vamos a plantear el diseño de un filtro paso banda, centrado a una frecuencia de 37,5MHz, con un ancho de banda de 7MHz para unas pérdidas de retorno mayores que 14dB, y un ancho de banda de rechazo de 19MHz, con atenuación mayor de 20dB. Calculando el filtro, se obtienen 3 secciones, con el siguiente esquema

Filtro paso banda de tres secciones

Filtro paso banda de tres secciones

Con los valores de componentes calculados, se buscan valores estándar que puedan hacer la función de transferencia de este filtro, cuya respuesta es

Respuesta en frecuencia del filtro paso banda

Respuesta en frecuencia del filtro paso banda

donde podemos ver que la frecuencia central es 37,5MHz, que las pérdidas de retorno están por debajo de 14dB en ±3,5MHz de la frecuencia central y que el ancho de banda de rechazo es de 18,8MHz, con 8,5MHz a la izquierda de la frecuencia central y 10,3MHz a la derecha de la frecuencia central.

Bien, ya tenemos diseñado nuestro filtro, y ahora vamos a hacer un primer análisis estadístico, considerando que las tolerancias de los condensadores son ±5%, y que las inducciones son ajustables. Además, no vamos a indicar correlación en ninguna variable, pudiendo tomar cada variable un valor aleatorio independiente de la otra.

ANÁLISIS ESTADÍSTICO DEL FILTRO SIN CORRELACIÓN ENTRE VARIABLES

Como vimos en la entrada anterior, cuando tenemos variables aleatorias vamos a tener dispersión en la salida, así que lo óptimo es poner unos límites según los cuales podremos considerar el filtro válido, y a partir de ahí analizar cuál es su respuesta. Para ello se recurre al análisis YIELD, que es un análisis que, usando el algoritmo de Monte Carlo, nos permite comprobar el rendimiento o efectividad de nuestro diseño. Para realizar este análisis hay que incluir las especificaciones según las cuales se puede dar el filtro por válido. Las especificaciones elegidas son unas pérdidas de retorno superiores a 13,5dB entre 35÷40MHz, con una reducción de 2MHz en la anchura de banda, y una atenuación mayor de 20dB por debajo de 29MHz y por encima de 48MHz. Haciendo el análisis estadístico obtenemos

Análisis estadístico del filtro. Variables sin correlación.

Análisis estadístico del filtro. Variables sin correlación.

que, sinceramente, es un desastre: sólo el 60% de los posibles filtros generados por variables con un ±5% de tolerancia podrían considerarse filtros válidos. El resto no serían considerados como válidos en un control de calidad, lo que significaría un 40% de material defectivo que se devolvería al proceso de producción.

De la gráfica se puede ver, además, que son las pérdidas de retorno las principales responsables de que exista tan bajo rendimiento. ¿Qué podemos hacer para mejorar este valor? En este caso, tenemos cuatro variables aleatorias. Sin embargo, dos de ellas son del mismo valor (15pF), que cuando son montadas en un proceso productivo, suelen pertenecer al mismo lote de fabricación. Si estas variables no presentan ninguna correlación, las variables pueden tomar valores completamente dispares. Cuando las variables no presentan correlación, tendremos la siguiente gráfica

Condensadores C1 y C3 sin correlación

Condensadores C1 y C3 sin correlación

Sin embargo, cuando se están montando componentes de un mismo lote de fabricación, las tolerancias que presentan los componentes varían siempre hacia el mismo sitio, por tanto hay correlación entre dichas variables.

ANÁLISIS ESTADÍSTICO DEL FILTRO CON CORRELACIÓN ENTRE VARIABLES

Cuando usamos la correlación entre variables, estamos reduciendo el entorno de variación. En este caso, lo que analizamos no es un proceso totalmente aleatorio, sino lotes de fabricación en los cuales se producen las variaciones. En este caso, hemos establecido la correlación entre las variables C1 y C3, que son del mismo valor nominal y que pertenecen la mismo lote de fabricación, por lo que ahora tendremos

Condensadores C1 y C3 con correlación

Condensadores C1 y C3 con correlación

donde podemos ver que la tendencia a la variación en cada lote es la misma. Estableciendo entonces la correlación entre ambas variables, estudiamos el rendimiento efectivo de nuestro filtro y obtenemos

Análisis estadístico con C1, C2 variables correladas

Análisis estadístico con C1, C2 variables correladas

que parece todavía más desastroso. Pero ¿es así? Tenemos que tener en cuenta que la correlación entre variables nos ha permitido analizar lotes completos de fabricación, mientras que en el análisis anterior no se podía discernir los lotes. Por tanto, lo que aquí hemos obtenido son 26 procesos de fabricación completos exitosos, frente al caso anterior que no permitía discernir nada. Por tanto, esto lo que nos muestra es que de 50 procesos completos de fabricación, obtendríamos que 26 procesos serían exitosos.

Sin embargo, 24 procesos completos tendrían que ser devueltos a la producción con todo el lote. Lo que sigue siendo, realmente, un desastre y el Director de Producción estaría echando humo. Pero vamos a darle una alegría y a justificar lo que ha intentado siempre que no exista: el ajuste post-producción.

ANÁLISIS ESTADÍSTICO CON AJUSTE POST-PRODUCCIÓN

Como ya he dicho, a estas alturas el Director de Producción está pensando en descuartizarte poco a poco, sin embargo, queda un as en la manga, recordando que las inducciones las hemos puesto de modo que sean ajustables. ¿Tendrá esto éxito? Para ello hacemos un nuevo análisis, dando valores variables en un entorno de ±10% sobre los valores nominales, y activamos el proceso de ajuste post-producción en el análisis y ¡voilà! Aun teniendo un defectivo antes del ajuste muy elevado, logramos recuperar el 96% de los filtros dentro de los valores que se habían elegido como válidos

Análisis estadístico con ajuste post-producción

Análisis estadístico con ajuste post-producción

Bueno, hemos ganado que el Director de Producción no nos corte en cachitos, ya que el proceso nos está indicando que podemos recuperar la práctica totalidad de los lotes, eso sí, con el ajuste, por lo que con este análisis podemos mostrar no sólo el defectivo sino la capacidad de recuperación del mismo.

Podemos representar cómo han variado las inducciones (en este caso las correspondientes a las resonancias en serie) para poder analizar cuál es la sensibilidad del circuito frente a las variaciones más críticas. Este análisis permite establecer un patrón de ajuste para reducir el tiempo en el que se debe de tener un filtro exitoso.

Análisis de los patrones de ajuste en las inducciones de las resonancias serie

Análisis de los patrones de ajuste en las inducciones de las resonancias serie

Así, con este tipo de análisis, realizado en el mismo momento del diseño, es posible tomar decisiones que fijen los patrones posteriores de la fabricación de los equipos y sistemas, pudiendo establecer patrones fijos de ajuste post-producción sencillos al conocer de antemano la respuesta estadística del filtro diseñado. Una cosa muy clara que he tenido siempre, es que cuando no he hecho este análisis, el resultado es tan desastroso como muestra la estadística, así que mi recomendación como diseñador es dedicarle tiempo a aprender cómo funciona y hacerle antes de que le digas a Producción que tu diseño está acabado.

CONCLUSIONES

En esta entrada hemos querido mostrar un paso más en las posibilidades del análisis estadístico usando Monte Carlo, avanzando en las posibilidades que muestra el método a la hora de hacer estudios estadísticos. El algoritmo nos proporciona resultados y nos permite fijar condicionantes para realizar diversos análisis y poder optimizar más si se puede cualquier sistema. Hemos acudido hasta a un ajuste post-producción, a fin de calmar la ira de nuestro Director de Producción, que ya estaba echando humo con el defectivo que le estábamos proporcionando. En la siguiente entrada, abundaremos un poco más en el método con otro ejemplo que nos permita ver más posibilidades en el algoritmo.

REFERENCIAS

  1. Castillo Ron, Enrique, “Introducción a la Estadística Aplicada”, Santander, NORAY, 1978, ISBN 84-300-0021-6.
  2. Peña Sánchez de Rivera, Daniel, “Fundamentos de Estadística”, Madrid,  Alianza Editorial, 2001, ISBN 84-206-8696-4.
  3. Kroese, Dirk P., y otros, “Why the Monte Carlo method is so important today”, 2014, WIREs Comp Stat, Vol. 6, págs. 386-392, DOI: 10.1002/wics.1314.

 

Estudio del comportamiento de un material piezoeléctrico (II)

En la entrada anterior habíamos estudiado el fenómeno piezoeléctrico a partir de las ecuaciones constitutivas que relacionan los campos eléctricos y mecánicos generados en el material. Los materiales piezoeléctricos se utilizan, gracias a este comportamiento, como componentes electrónicos con muy alta calidad. Su uso en filtros SAW, en resonadores BAW, en cristales de Cuarzo, para zumbadores e incluso como cargadores en Energy Harvesting hacen necesario, cada vez más, tener un modelo de circuito equivalente que defina correctamente el componente y su respuesta electroacústica. En esta entrada vamos a presentar un modelo, extraído en los años 40-50 por W.P. Mason y que sintetiza con bastante precisión los fenómenos electroacústicos tanto en su modelo lineal como no lineal.

MODELO DE MASON: EXTRACCIÓN

piezoelectrico

Esquema de un piezoeléctrico

Hemos dicho que un piezoeléctrico es un material electromecánico en el que aparecen fuerzas mecánicas cuando se le aplican fuerzas eléctricas y, recíprocamente, eléctricas cuando se aplican fuerzas mecánicas. La figura muestra un esquema dimensional de un material piezoeléctrico.

En el piezoeléctrico aplicamos un potencial eléctrico E⋅δz, y en ambas superficies del piezoeléctrico aparecen sendas tensiones T1 y T2, en cada una de las superficies del material. Aparecen también las velocidades de desplazamiento v1 y v2, que están relacionadas con el desplazamiento u a través de

v=\dfrac {\partial u}{\partial t}

Por último, aparece una corriente eléctrica I en los electrodos del potencial eléctrico. Por último, las magnitudes de A y d son la superficie en m2 y el espesor del dieléctrico en m.

En la entrada anterior estudiamos el comportamiento piezoeléctrico a partir de sus ecuaciones constitutivas. Recordando entonces cómo se escribían estas ecuaciones, teníamos

T=c^ES-e_{33}E

D=e_{33}S+{\epsilon}^SE

Se tiene que cumplir, además, la conservación de la energía a través de la ecuación de Lipmann

{\left[ \dfrac {\partial D}{\partial S} \right]}_E=-{\left[ \dfrac {\partial T}{\partial E} \right]}_S

Combinando adecuadamente estas ecuaciones, habíamos obtenido una ecuación de onda definida por

\left(\rho \dfrac {{\partial}^2}{\partial t^2} -c^D \dfrac {{\partial}^2}{\partial z^2} \right)u=0

que corresponde a una onda de propagación.

Utilizando la expresión que liga v con la variación temporal de u, podemos escribir la 2ª Ley de Newton como

\dfrac {\partial}{\partial z}(-T)=-\rho \dfrac {\partial v}{\partial t}

Recordando, además, que la deformación S derivaba del gradiente de u, calculamos la variación de S con respecto al tiempo y obtenemos su relación con el gradiente de v. Expresándolo para un sistema unidimensional en el eje z, obtenemos

\dfrac {\partial S}{\partial t}=\dfrac {{\partial}^2 u}{\partial z \partial t}=\dfrac {\partial v}{\partial z}

y despejando S de las ecuaciones constitutivas, obtenemos

\dfrac {\partial v}{\partial z}=-\dfrac {1}{c^D}\dfrac {\partial}{\partial t} \left( -T-\dfrac {e_{33}}{{\epsilon}^S}D \right)

Escalamos ahora las ecuaciones, multiplicando por A  los términos de ambas ecuaciones, y agrupándolas, obtenemos

\dfrac {\partial}{\partial z}(-A \cdot T)=-\rho \dfrac {\partial A \cdot v}{\partial t}

\dfrac {\partial A \cdot v}{\partial z}=-\dfrac {1}{c^D}\dfrac {\partial}{\partial t} \left( -A \cdot T\right)-\dfrac {1}{c^D}\left( -\dfrac {e_{33}}{{\epsilon}^S}A \cdot D \right)

Si comparamos este resultado con las ecuaciones del Telegrafista que define una línea de transmisión para las ondas electromagnéticas, podemos comprobar que son similares. La primera relaciona la variación espacial de la tensión -A·T con la variación temporal de la corriente A·v, y correspondería a una inducción por unidad de longitud similar a la de un elemento diferencial de una línea de transmisión.

En la segunda ecuación, que relaciona la variación espacial de la corriente A·v, con respecto a una variación temporal de una tensión, representa una capacidad por unidad de longitud similar a la de la línea de transmisión. Sin embargo, en el segundo término de la ecuación, tenemos una dependencia con la tensión -A·T, que sería una línea de transmisión convencional, y otra dependencia con el desplazamiento eléctrico D. Esa dependencia se representa mediante una línea de transmisión flotante como la que se muestra en la figura siguiente.

linea_t

Modelo acústico del piezoeléctrico, en línea de transmisión, a partir de las ecuaciones del Telegrafista

De este modo ya tenemos asemejada la parte acústica a una línea de transmisión definida por los campos que actúan en las ecuaciones constitutivas.

Sin embargo, esta línea no está del todo completa, ya que hay que incluir el efecto de los electrodos, aislando los campos acústicos de los campos eléctricos. El término que relaciona la variación espacial de A·v con el desplazamiento D puede ser acoplado a través de un transformador ideal N:1, como se muestra en la figura

Acoplamiento de la parte acústica y la eléctrica mediante un transformador N:1

Acoplamiento de la parte acústica y la eléctrica mediante un transformador N:1

y la relación de N se puede calcular por

N=-\dfrac {e_{33}}{d}A

Vamos ahora a estudiar la corriente I. Esta corriente se produce cuando se aplica una tensión E⋅δz en los electrodos del piezoeléctrico. Al aplicar esa tensión, generamos una polarización P, debido al carácter dieléctrico del material. Del mismo modo, sabemos que la corriente I es una variación de la carga Q, y que sólo se producía variación de la carga superficial σ del piezoeléctrico, y que ésta es debida a la polarización P, no variando la carga volumétrica, por lo que

I=\dfrac {\partial Q}{\partial t}=A \dfrac {\partial \sigma}{\partial t}=A \dfrac {\partial P}{\partial t}

y como a la polarización P se opone el desplazamiento eléctrico D para mantener el campo electrico E, obtenemos que

I=-A \dfrac {\partial D}{\partial t}

Estudiamos ahora el potencial E⋅δz aplicado en los electrodos. Usando las ecuaciones constitutivas, obtenemos que el potencial es

{\delta}V=E \cdot {\delta}z=-\dfrac {1}{{\epsilon}^S} \left( {e_{33}S-D} \right) \cdot {\delta}z

Derivando esta expresión con respecto al tiempo, obtenemos

\dfrac {\partial ({\delta}V)}{\partial t}=-\dfrac {1}{{\epsilon}^S} \left( {e_{33} \dfrac {\partial S}{\partial t}-\dfrac {\partial D}{\partial t}} \right) \cdot {\delta}z-\dfrac {1}{{\epsilon}^S} \left( {e_{33} \dfrac {\partial v}{\partial z}-\dfrac {I}{A}} \right) \cdot {\delta}z=\dfrac {\partial ({\delta}V_1)}{\partial t}+\dfrac {\partial ({\delta}V_2)}{\partial t}

Estudiemos ahora los términos en δV1 y  δV2. En el término en δV1 podemos obtener la expresión

I=-\dfrac {{\epsilon}^S A}{{\delta}z} \dfrac {\partial ({\delta}V_2)}{\partial t}=-C_o \dfrac {\partial ({\delta}V_2)}{\partial t}

y es la corriente que fluye a través de un condensador de valor CO , en paralelo con la tensión aplicada. Mientras, el término en δV2 se puede relacionar con la corriente que circula en la parte acústica a través de transformador, siendo Iprim la corriente que circula por el devanado primario del transformador. Usando las relaciones del transformador, podemos encontrar la relación de dicha corriente con esta tensión a través de

-\dfrac {{\delta}z}{e_{33}} \dfrac {\partial \left( I_{prim} \right)}{\partial z}=-\dfrac {{\epsilon}^S A}{e_{33}{\delta}z} \dfrac {\partial ({\delta}V_2)}{\partial t}

I_{prim}=- \left( -\dfrac {{\epsilon}^S A}{{\delta}z} \right) \dfrac {\partial ({\delta}V_2)}{\partial t}=-(-C_o) \dfrac {\partial ({\delta}V_2)}{\partial t}

Tenemos que hacer la consideración de que el peso de la tensión δV1>>δV2 , ya que al calcular la relación de transformación en el transformador hemos supuesto que es E⋅δz=δV, por lo que δV1δVδV20. De este modo, la corriente del primario es una corriente que circula a través de una capacidad negativa de valor CO.

Usando estos parámetros, deducidos de las ecuaciones constitutivas, es posible hacer un modelo completo del circuito equivalente de un piezoeléctrico, que se puede ver en la figura siguiente

mason_model

Circuito equivalente de Mason de un piezoeléctrico

CONDICIONES DE CONTORNO

Cualquier medio material está dentro de otros medios materiales (aire, agua, substratos semiconductores, metales, etc), y todos los medios materiales propagan ondas acústicas. Por tanto, así como en electromagnetismo definimos una impedancia de carga eléctrica sobre la que se transfiere la energía entregada desde el generador eléctrico, podemos definir una resistencia de carga acústica, que es donde se transfiere la energía acústica de la deformación. Esta resistencia de carga acústica está relacionada con la impedancia acústica del medio, y se transforma en una resistencia eléctrica a través de la expresión

R_L=Z_0 A= \rho v^DA

Por ejemplo, el aire tiene una impedancia acústica de 471 Rayls, así que para un piezoeléctrico AlN, con una superficie de 10.000μm2, si ambas superficies estuviesen en contacto con el aire, las impedancias de carga a conectar en los puertos A·T1 y A·T2 serían iguales y valdrían 4,71μΩ, lo que vendría a ser como colocar un cortocircuito en ambos puertos.

En el caso de que uno de los medios fuese aire y el otro, silicio, el silicio tiene una impedancia acústica de 8,35·105 Rayls, en el puerto del silicio habría que poner 8,35mΩ.

Hay que notar que, aunque la impedancia obtenida sea baja. no es estrictamente un cortocircuito. De hecho, al aire, que es el que más baja impedancia presenta, es al que consideramos un cortocircuito, mientras que el resto de materiales presentan impedancias acústicas más elevadas.

También es posible que tengamos un material compuesto de varios espesores de materiales, siendo uno de ellos piezoeléctrico, mientras que los demás son conductores o aislantes. Cuando esto ocurre, cada material puede ser representado por una línea de transmisión de igual modo que el piezoeléctrico. Por ejemplo, si el piezoeléctrico está encapsulado entre dos materiales diferentes, como el wolframio (W) y el molibdeno (Mo), y el wolframio está en contacto con el aire y el molibdeno con silicio, habría que añadir sendas líneas de transmisión entre las cargas y el piezoeléctrico, como se muestra en la figura siguiente

piezo_total

 

NO LINEALIDAD EN LOS MATERIALES: EL MODELO NO LINEAL DE MASON

En las condiciones de trabajo habituales de los piezoeléctricos, el funcionamiento debe de ser lineal. Sin embargo, los materiales presentan limitaciones que hay que tener en cuenta a la hora de trabajar con tensiones elevadas. Estas no linealidades introducen frecuencias espurias que reducen la calidad de la señal. Si estamos usando estos materiales en filtros de recepción, las no linealidades pueden representar un problema cuando una señal interferente de valor elevado atraviesa el material.

El piezoeléctrico es un resonador de muy alto factor de calidad. Traducido a parámetros discretos, se comporta como el circuito de la figura

Resonador equivalente de un piezoeléctrico

Resonador equivalente de un piezoeléctrico

La impedancia del resonador se puede representar en función de la frecuencia, obteniendo una gráfica similar a

impedancia

Impedancia del resonador en función de la frecuencia

El modelo, para bajos potenciales eléctricos, responderá correctamente de forma lineal. Sin embargo, a medida que aumentamos el valor del potencial eléctrico aplicado, empiezan a aparecer condiciones no lineales que limitarán su uso. Estas condiciones no lineales afectan, sobre todo, a las distorsiones de 2º y 3er orden, que son las que pueden afectar en mayor medida sobre la señal útil.

Una forma muy efectiva de simular no linealidades en circuitos eléctricos es el uso de las series de Volterra, una variante de los polinomios de Taylor en el que la respuesta depende en todo momento de los valores de los parámetros de entrada, incluyendo efectos de “memoria”, mediante acumulación de energía, de las capacidades e inducciones.

Como en las series de Taylor, las series de Volterra pueden ser truncadas en aquellos ordenes que sean superiores al que se considera dominante, por lo que nuestro modelo, considerando dominantes sobre todo el 2º y 3er orden de distorsión, puede truncarse a partir del 4º orden .

La distorsión afectará tanto al campo eléctrico como a la tensión mecánica. Las ecuaciones constitutivas, incluyendo estos efectos no lineales, quedarán descritas como

T=c^ES-e_{33}E+{\Delta}T

D=e_{33}S+{\epsilon}^SE+{\Delta}D

siendo ΔT un polinomio de 3er orden que se expresa mediante la suma de 2 términos ΔT2T3, donde el subíndice indica que el polinomio es de 2º o de 3er orden. El caso de ΔD es similar.

Los polinomios que ΔT2, ΔT3, ΔD2 yΔD3 se muestran a continuación:

{\Delta}T_2=\dfrac {1}{2}{\delta}_3 c^E S^2-{\delta}_1 e_{33} S E +\dfrac {1}{2}{\delta}_2 {\epsilon}^S E^2

{\Delta}T_3=\dfrac {1}{3}{\gamma}_4 c^E S^3-{\gamma}_1 e_{33} S^2 E+{\gamma}_2 {\epsilon}^S S E^2 +\dfrac {1}{3}{\gamma}_2 \dfrac {{\epsilon}^S e_{33}}{c^E} E^3

{\Delta}D_2=\dfrac {1}{2}{\delta}_1 e_{33} S^2-{\delta}_2 {\epsilon}^S S E +\dfrac {1}{2}{\delta}_4 \dfrac {{\epsilon}^S e_{33}}{c^E} E^2

{\Delta}D_3=\dfrac {1}{3}{\gamma}_1 e_{33} S^3-{\gamma}_2 {\epsilon}^S S^2 E-{\gamma}_3 \dfrac {{\epsilon}^S e_{33}}{c^E} S E^2 +\dfrac {1}{3}{\gamma}_5 \dfrac {({\epsilon}^S)^2}{c^E} E^3

y además, se sigue teniendo que cumplir la ecuación de Lipmann para la conservación de la energía.

Las series que definen el modelo no lineal se pueden introducir en el modelo lineal de Mason a través de fuentes de tensión dependientes, tanto en la zona eléctrica como en la zona acústica. A dichas fuentes las denominamos VC y TC y están situadas, dentro del modelo, en la entrada eléctrica (caso de VC) y en línea común de la corriente de secundario (caso de  TC), tal y como se muestra en la figura.

Modelo de Mason con las fuentes no lineales

Modelo de Mason con las fuentes no lineales

Estas fuentes se derivan de las ecuaciones constitutivas del mismo modo que hemos derivado el modelo lineal, y se obtienen sus expresiones, que son

T_C=A \left( \dfrac {e_{33}}{{\epsilon}^S}{\Delta}D+{\Delta}T \right)

V_C=\dfrac {d}{{\epsilon}^S}{\Delta}D

Con estas expresiones en el modelo de Mason, tenemos un modelo equivalente no lineal de un material piezoeléctrico, que incluye los efectos de 2º y 3er orden de distorsión, y podemos estudiar el comportamiento de un componente fabricado con este tipo de materiales en presencia de señales interferentes.

CONCLUSIÓN

En esta entrada hemos querido presentar un modelo eléctrico útil para representar un material piezoeléctrico, extraído a partir de las ecuaciones constitutivas. Esto nos ha permitido llegar al modelo que W.P. Mason obtuvo en los años 40, y entender cómo realizó la extracción de los parámetros del modelo.

No sólo hemos obtenido el modelo de Mason, sino que hemos parametrizado un modelo que pueda representar las variaciones no lineales a partir de las series de Volterra, que nos permitirán realizar un modelo no lineal que incluya los efectos de 2º y 3er orden de distorsión, y poder predecir la respuesta de un dispositivo de estas características en condiciones de señales interferentes.

En la próxima entrada vamos a proceder a estudiar el modelo en un simulador, mostrando cómo se realiza un modelo equivalente del piezoeléctrico incluyendo los parámetros no lineales, describiremos un método de medida para extraer los parámetros no lineales y mostraremos los resultados obtenidos mediante simulación.

REFERENCIAS

  1. W.P. Mason, Electromechanical Transducers and Wave Filters”, Princeton NJ, Van Nostrand, 1948
  2. J. F. Rosenbaum, “Bulk Acoustic Wave Theory and Devices”, Artech House, Boston, 1988.
  3. M. Redwood, “Transient performance of a piezoelectric transducer”, J. Acoust. Soc. Amer., vol. 33, no. 4, pp. 527-536, April 1961.
  4. R. Krimholtz, D.A. Leedom, G.L. Mathaei, “New Equivalent Circuit for Elementary Piezoelectric Transducers”, Electron. Lett. 6, pp. 398-399, June 1970.
  5. Y. Cho and J. Wakita, “Nonlinear equivalent circuits of acoustic devices”, Proc. IEEE Ultrason. Symp., Nov. 1993, vol. 2, pp. 867–872.
  6. C. Collado, E. Rocas, J. Mateu, A. Padilla, and J. M. O’Callaghan, “Nonlinear Distributed Model for BAW Resonators”, IEEE Trans. On Microwave Theory and Techniques, vol. 57, no. 12, pp. 3019-3029, Dec. 2009.
  7. E. Rocas, C. Collado, J.C. Booth, E. Iborra, and R. Aigner, “Unified Model for Bulk Acoustic Wave Resonators’ Nonlinear Effects”, Proc. 2009 IEEE Ultrasonics Symposium, pp. 880-884, Sept. 2009.
  8. M. Ueda, M Iwaki, T. Nishihara, Y. Satoh, and K Hashimoto, “Investigation on Nonlinear Distortion of Acoustic Devices for Radio-Freqquency Applications and Its Suppression”, Proc. 2009 IEEE Ultrasonics Symposium, pp. 876-879, Sept. 2009.
  9. M. Ueda, M Iwaki, T. Nishihara, Y. Satoh, and K Hashimoto, “A Circuit Model for Nonlinear Simulation of Radio-Frequency Filters Employing Bulk Acoustic Wave Resonators”, IEEE Trans. On Ultrasonics, Ferroelectrics, and Frequency control, vol. 55, 2008, pp. 849-856.
  10. D. S. Shim and D. Feld, “A General Nonlinear Mason Model of Arbitrary Nonlinearities in a Piezoelectric Film”, Proc. 2010 IEEE Ultrasonics Symposium, pp. 295-300, Oct. 2010.
  11. D. Feld, “One-Parameter Nonlinear Mason Model for Predicting 2nd & 3rd Order Nonlinearities in BAW Devices”, Proc. 2009 IEEE Ultrasonics Symposium, pp. 1082-1087, Sept. 2009.