Archivo de la etiqueta: Opinión

La importancia de una divulgación seria y contrastada

Ni que decir tiene que la divulgación científica o tecnológica debe de ocupar un lugar importante en nuestra sociedad. Y es tarea de los medios de comunicación ofrecer una información lo más asequible posible a aquellas personas cuya formación técnica no les permite comprender totalmente los hechos descubiertos. Esto, desgraciadamente, no ocurre, buscando un titular sensacionalista y desechando cualquier mínimo rigor en la noticia. En esta entrada vamos a analizar un reciente “paper” publicado en la revista NATURE, cómo lo han tratado los diferentes medios y cómo en realidad tendría que haber sido un análisis riguroso del artículo publicado.

Por mi profesión, tengo que ser consumidor compulsivo de “papers”. Está en mi ADN profesional. Y por ese hecho tengo que estar alerta a las últimas novedades que se puedan dar en el “estado del arte”. Es algo complicado teniendo en cuenta que diariamente se publican cientos de artículos, unos en revistas de impacto y otros en páginas y blogs con menos importancia, además de aquellos que se pueden publicar en revistas y boletines de asociaciones científicas mundiales. El mundo del “paper” científico no es un mundo, precisamente, pequeño.

A veces llegas a un artículo de impacto gracias a los medios de comunicación, gracias a sus secciones técnicas y científicas. Sin embargo, últimamente estas secciones están dejando mucho que desear en cuanto a la presentación del artículo, a su relevancia y a lo más importante, qué representa realmente.

Como mi especialidad es el Electromagnetismo, recientemente he encontrado una serie de noticias con las que, en realidad, no sé qué quedarme. El “paper” en cuestión [1] está escrito por un equipo del MIT (Instituto de Tecnología de Massachusetts, considerado como uno de los centros tecnológicos más prestigiosos del mundo), dirigido por el Prof. Tomás Palacios y en el que han intervenido un nutrido grupo de ingenieros y tecnólogos mundiales.

Este artículo muestra el diseño de una rectena que se puede usar para captar la energía electromagnética presente en la banda de WiFi (2.45 GHz, 5.8 GHz), mediante una antena flexible y un semiconductor de muy bajo perfil. Ante todo, lo que representa el artículo es la posibilidad de hacer antenas flexibles con espesores muy finos, con buena eficiencia, frente a las actuales rectenas usando semiconductores convencionales. En el artículo, los ingenieros han usado un semiconductor basado en el disulfuro de molibdeno (MoS2), un material muy usado en aplicaciones como lubricantes y refinación petrolífera. El hecho de que tenga una banda prohibida entre la banda de conducción y la de valencia hace que este material pueda ser usado en la construcción de dispositivos semiconductores como los diodos.

Sin embargo, el disulfuro de molibdeno tiene una movilidad electrónica baja frente a los semiconductores convencionales de silicio o arseniuro de galio, lo que limita la banda de frecuencias en el que se puede usar. Lo que los autores del “paper” han logrado es llegar a una frecuencia de corte usando este semiconductor como diodo rectificador de 10 GHz. Lo cual es un logro evidente. La cuestión es ¿cómo se trata en los medios este avance?

TITULARES SENSACIONALISTAS EN BUSCA DE CLICS

Pongo sólo dos artículos encontrados en los medios, como referencia, aunque por supuesto tenemos muchos más y casi todos han caído en el mismo sensacionalismo. El artículo de El Mundo [2] titula “Un científico español crea una antena capaz de convertir en electricidad la señal WiFi”. Si bien es cierto que el Prof. Palacios, además de ser español, es el director del equipo multinacional de ingenieros del MIT que han conseguido el logro del que hablaba antes, hay que indicar al redactor de la noticia que todas las antenas, desde que se utilizan, convierten la señal WiFi (o la de radio, o la de TV, es lo mismo) en señal eléctrica PORQUE SON SEÑALES ELÉCTRICAS. No son ectoplasmas, ni algo esotérico que viaja por el aire. Se generan mediante equipos eléctricos y por tanto, son susceptibles de ser captadas por otros equipos eléctricos. Si no, no habría comunicaciones inalámbricas como las que llevamos emitiendo desde que Hertz hiciera su primera transmisión radiada en 1887 (ya ha llovido desde entonces). El titular, que también reproduce Vozpopuli [2] con la misma intención (y casi todos han reproducido lo mismo), demuestra que no se ha hecho una verdadera revisión de estilo y menos se ha consultado éste con expertos en el tema.

El artículo de El Mundo parece que pretende ser una entrevista con el Prof. Palacios. Pasa lo mismo con el de Vozpopuli, aunque dudo mucho que ningún medio español haya acudido al MIT a entrevistar al director de este equipo de tecnólogos. Más bien creo que están usando alguna entrevista realizada al ingeniero y de esa forma desarrollan la noticia. Aunque la proximidad de la publicación del “paper” en Nature (todo se publica el mismo día 28 de enero) me muestra que habrán buscado una publicación americana y habrán traducido con el Google Translate. No sería la primera vez.

En el artículo de El Mundo hay una frase que todavía rechina en mis oídos: “Los ingenieros han conseguido desarrollar una antena que captura las ondas electromagnéticas, incluidas las que se transmiten en una conexión inalámbrica, en forma de corriente alterna”. Habría que decirle al autor que todas las antenas son capaces de capturar las ondas electromagnéticas, INCLUIDAS LAS QUE SE TRANSMITEN EN UNA CONEXIÓN INALÁMBRICA PORQUE SON ONDAS ELECTROMAGNÉTICAS. De hecho, su router inalámbrico tiene antenas, ya sean externas (ésas se ven) o internas (para verlas hay que desmontar el equipo). Pero toda onda electromagnética radiada se capta con antenas, no sólo la WiFi, sino la radio convencional, la TV y las señales de satélite.

Vozpopuli tampoco trata con rigor el “paper”. Iniciando con un “Imagine un mundo en el que los teléfonos móviles, los ordenadores portátiles y el resto de dispositivos se cargaran sin baterías y de manera remota”, cometen un despropósito del tamaño de un camión: si los móviles no tienen baterías… ¿qué vas a cargar? Lo que se cargan son las baterías, la electrónica de un móvil necesita una alimentación de DC para poder funcionar y eso se lo proporciona la batería. Y ya hay cargadores inalámbricos para móviles, usados precisamente para cargar la batería. Lo que pasa es que esos cargadores se basan en acoplamientos inductivos en campo cercano y no en la energía radiada en el espacio libre. Lo coherente hubiese sido decir Imagine un mundo en el que su móvil no tenga batería y se alimente a través de la emisión de radio presente en el espacio. Muy futurista e hiperoptimista (mucho tienen que bajar los consumos de los móviles para poder alimentar con energías tan bajas los dispositivos electrónicos que contienen), pero por lo menos se ajustaría más a lo que es el “paper” publicado.

Otro de los despropósitos de Vozpopuli se da cuando dicen que los dispositivos capaces de convertir ondas electromagnéticas de corriente alterna en electricidad se conocen como “rectennas” y hasta ahora eran rígidas y basadas en materiales demasiado caros para producirlos a gran escala. Que son rígidas, es cierto, pero que están basadas en materiales demasiado caros para producirlos a gran escala es una patraña. La mayor parte de las rectenas que aparecen en los cientos de “papers” publicados mundialmente suelen ser semiconductores de uso general, y bastante más baratos que el tratamiento industrial del disulfuro de molibdeno como semiconductor. De hecho, no hay semiconductores electrónicos en el mercado industrial hechos con disulfuro de molibdeno, por lo que, por ahora, la tecnología desarrollada en el MIT, hasta que no se logre un escalado industrial, es como los coches de Elon Musk: caros, con poca autonomía y con plazos de entrega al cliente de eones.

Pero El Mundo no le anda a la zaga cuando dice que en concreto la antena ha llegado a producir unos 40 microvatios de potencia, expuesta a niveles de potencia típicos de las señales WiFi -en torno a 150 microvatios-, una cantidad que según los autores es más que suficiente para iluminar una pantalla de móvil o activar chips de silicio. Aunque de momento son prudentes, sus creadores esperan que la nueva tecnología se pueda materializar en los próximos años. Sí, 40 μW pueden mantener en modo SLEEP un microprocesador sin consumir la batería del dispositivo móvil, permitiendo que se active cuando se necesita usar (entonces tirará de la corriente de la batería), pero para nada será suficiente cuando se quiera activar el amplificador que tiene que emitir la señal GSM, con un pico de emisión de 4 W. Ahí, los 40 μW son como tratar de subir 1000 veces seguidas el Everest. En este caso, lo más lógico es indicar que se obtiene una eficiencia bastante alta con señales muy bajas, ya que si la señal generada en la antena por el campo radiado por un router WiFi es 150 μW (-8,2 dBm) , la eficiencia es del 27% y eso se logra en las rectenas actuales de silicio y arseniuro de galio.

En fin, el tratamiento dado a la noticia es un cúmulo de incorrecciones que se podrían haber solventado publicando la noticia al día siguiente o incluso con dos días, pero bien publicada y con un lenguaje cercano al profano, pero asesorado por un técnico. Mi lenguaje es demasiado técnico y es labor del periodista traducirlo a un lenguaje entendible por su público, no acostumbrado a temas técnicos.

COMO SE DEBERÍA HABER TRATADO LA NOTICIA

Para tratar la noticia en la justa medida, primero hay que leerse el “paper”, para comprender lo que en realidad se ha logrado. En realidad, el “paper” no presenta sueños etéreos de un futuro en el que las paredes de casa van a ser enormes antenas. Con su lenguaje técnico, muestra una serie de experimentos realizados sobre una rectena hecha en perfiles flexibles, y esto es un logro porque los materiales que se habían usado hasta el momento para hacer rectenas flexibles no llegaban a la frecuencia de corte a la que han llegado los tecnólogos del MIT. Con este logro, se puede captar la señal eléctrica que hay en el ambiente y lograr optimizar el consumo de baterías, de modo que el móvil no quite carga a la batería mientras está en modo SLEEP, y estas rectenas pueden ser integradas en dispositivos móviles en las próximas generaciones.

Obviamente hay que procesar debidamente el MoS2 para conseguir el escalado industrial necesario, ya que antenas en formato flexible se fabrican en la actualidad y hay para todos los gustos: de banda estrecha, de banda ancha, multibanda, etc. Pero aunque en los artículos hablen de que con esta tecnología ya no necesitaremos extraer litio para las baterías, hay que recordar también que el disulfuro de molibdeno es un mineral y hay que extraerlo de la tierra, que no crece en los árboles.

Por supuesto que felicito al Prof. Palacios y a su equipo por el logro conseguido, recordando también que la ciencia no tiene nacionalidad y que no es una competición. Tampoco es bueno tratar estas noticias como si hubiese ganado Nadal un Grand Slam o Alonso las 24 horas de Le Mans. El equipo es multinacional como todo lo que se hace en el mundo investigador: recurres a los mejores, sin importar la nacionalidad, porque sus resultados contribuyen al cuerpo del conocimiento y al estado del arte.

REFERENCIAS

    1. Zhang, Xu et al.,”Two-dimensional MoS2-enabled flexible rectenna for Wi-Fi-band wireless energy harvesting“, Nature, Ene. 28, 2019, DOI: 10.1038/s41586-019-0892-1
    2. Herrero, Amado, “Un científico español crea una antena capaz de convertir en electricidad la señal WiFi“, El Mundo, Ene. 28, 2019
    3. Un ingeniero español crea la primera antena que convierte el WiFi en electricidad“, Vozpopuli, Ene. 28, 2019
Anuncios

Using the Three-Dimensional Smith Chart

The Smith Chart is a standard tool in RF design. Developed by Phillip Smith in 1939, it has become the most popular graphic method for representing impedances and solving operations with complex numbers. Traditionally, the Smith Chart has been used as 2-D polar form, centered at an unit radius circle. However, the 2D format has some restrictions when the active impedances (oscillators) or stability circles (amplifiers) are represented, since these ones usually leave the polar chart. Last years, three-dimensional Smith Chart has become popular. Advances in 3D rendering software make it easy to use for design. In this post, I will try to show the handling of the three-dimensional Smith Chart and its application for a low-noise amplifier design.

When Phillip Smith was working at Bell Labs, he have to match one antenna and he was looked for a way to solve the design graphically. By means of the mathematical expressions that define the impedances in the transmission lines, he got to represent the impedance complex plane by circles with constant resistances and reactances. These circles made it easier for him to represent any impedance in a polar space, with the maximum matching placed in the center of the chart and the outer circle representing the pure reactance. Traditionally, Smith’s Chart has been represented in polar form as shown below

Fig. 1 – Traditional Smith’s Chart

The impedance is normalized calculating the ratio between the impedance and the generator impedance. The center of the chart is pure unit resistance (maximum matching) while the peripheral circle that limits the chart is the pure reactance. The left end of the chart represents the pure short circuit and the right end, the pure open circuit. The chart was then very popular to be able to perform calculations for matching networks with transmission lines using a graphical method. However, the design difficulties with the chart happened when active impedances were analyzed, studying amplifiers stability and designing oscillators.

By its design, the chart is limited to the impedances with positive real part, but it could represent, extending the complex plane through the Möbius transformation, impedances with negative real part [1]. This expanded chart, to the negative real part plane, can be seen in the following figure

Fig. 2- Smith’s Chart expanded to active impedances

However,this chart shows two issues: 1) although it allows to represent all the impedances, there is a problem with the complex infinity, so it remains limited and 2) the chart has large dimensions that make it difficult to us in a graphic environment, even in a computer-aided environment. However, the extension is needed when the amplifier stability circles are analyzing, since in most of cases the centers of these circles are located outside the passive impedance chart.

In a graphical computer environment, representing the circles is already performed by the software itself through the calculations, being able to limit the chart to the passive region and drawing only a part of the circle of stability. But with oscillators still have the problem of complex infinity, which could be solved through a representation in a Riemann’s sphere.

RIEMANN’S SPHERE

The Riemann’s sphere is a mathematical solution for representing the complete complex plane, including infinity. The entire complex surface is represented on a spherical surface by a stereographic projection of this plane.

Fig. 3 – Projection of the complex plane on a sphere

In this graphic form the southern hemisphere represents the origin, the northern hemisphere represents infinity and the equator the circle of unitary radius. The distribution of complex values in the sphere can be seen in the following figure

Fig. 4 – Distribution of complex values in the sphere

So, it is possible to represent any complex number on a surface easy to handle.

SMITH’S CHART ON A RIEMANN’S SPHERE

Since Smith’s Chart is a complex representation, it can be projected in the same way to a Riemann’s sphere [2], as shown in the following figure

Fig. 5 – Projection of the Smith’s Chart on a Riemann’s sphere

In this case, the northern hemisphere shows the impedances with positive resistance (passive impedances), in the southern hemisphere, the impedances with negative resistance (active impedances), in the eastern hemisphere, the inductive impedances, and in the western one the capacitive impedances. The main meridian shows the pure resistive impedance.

Thus, when we wish to represent any impedance, either active or passive, it can be represented at any point in the sphere, greatly facilitating its drawing. In the same way, we can represent the stability circles of any amplifier without having to expand the chart. For example, if we want to represent the stability circles for one transistor, which parameters S at 3GHz are the next

S11=0,82/-69,5   S21=5,66/113,8   S12=0,03/48,8  S22=0,72/-37,6

its representation in the conventional Smith’s Chart is

Fig. 6 – Traditional representation for stability circles

 

while in the three-dimensional chart it is

Fig. 7 – Stability circles on the 3D chart

where both circles can be seen, a fraction in the northern hemisphere and the other one in the south. Thus, its representation has been greatly facilitated.

A PRACTICAL APPLICATION: LOW NOISE AMPLIFIER

Let’s see a practical application of the 3D chart matching the previous amplifier with the maximum stable gain and minimum figure of noise, at 3GHz. Using traditional methods, and knowing the transistor parameters which are the next

S11=0,82/-69,5   S21=5,66/113,8   S12=0,03/48,8  S22=0,72/-37,6

NFmin=0,62  Γopt=0,5/67,5 Rn=0,2

S-parameters are represented in the3D Smith’s chart and the stability circles are drawn. For a better representation 3 frequencies are used, with a 500MHz bandwidth.

Fig. 8 – S-parameters and stability circles for the transistor (S11 S21 S12 S22 Input Stability Circle Output Stability Circle)

It can be seen that S-parameters as well as the stability circles in both the conventional Smith’s chart and 3D one. In the conventional Smith’s chart, the stability circles leave the chart.

One amplifier is unconditionally stable when the stability circles are placed in the active impedance area of the chart, in the southern hemisphere, under two conditions: if the circles are placed in the active region and do not surround the passive one, the unstable impedances are located inside the circle. If the circles surround the passive region, the unstable impedances are located outside the circle.

.

Fig. 9 – Possible cases for stability circles in the active region

In this case, since part of the circles enters on the passive impedances region, the amplifier is conditionally stable.Then the impedances that could unstabilize the amplifier are placed inside the circles. This is something that cannot be seen clearly in the three-dimensional chart yet, the app does not seem to calculate it and would be interesting to include in later versions, because it would greatly facilitate the design.

Let’s match now the input for the minimum noise. For this, it is needed to design a matching network to transform from 50Ω to reflection coefficient Γopt, being its normalized impedance Zopt=0,86+j⋅1,07. In the app, opening the design window and writing this impedance

Fig. 10 – Representation of Γopt

Using now the admittance, we translate in the circle of constant conductance until the real part of the impedance is 1. This is down by estimation and a 0,5 subsceptance is got. It should be increased 0,5 – (- 0,57) = 1.07 and this is a shunt capacitor, 1,14pF.

Fig. 11 – Translating to circle with real part 1.

Now it is only needed to put a component that makes zero the reactance, when the resistance is constant. As the reactance is -1.09, the added value should be 1.09, so that the reactance is zero. This is equivalent to a series inductor, 2,9nH.

Fig. 12 – Source impedance matched to Γopt

Once calculated the input matching network for the lower noise figure, we recalculate the S-parameters. Being an active device, the matching network transforms the S parameters, which are:

S11=0,54/-177   S21=8,3/61,1   S12=0,04/-3,9  S22=0,72/-48,6

and which are represented in the Smith’s chart to get the stability circles.

Fig. 13 – Transistor with matching network to Γopt and stability circles.

The unstable regions are the internal regions, so the amplifier remains stable.

Now the output matching network is got for maximum stable gain, and the ouput reflection coefficient S22=0,72/-48,6 should be loaded by ΓL (S22  conjugate), translating from 50Ω to ΓL=0,72/48,6. This operation is performed in the same way that input matching network. By doing the complete matching , S parameters are recalculated, with input and oputput matching networks. These are

S11=0,83/145   S21=12/-7.5   S12=0,06/-72,5  S22=0,005/162

The gain is 20·log(S21)=21,6dB, and the noise figure, 0,62dB (NFmin). Now it is only represented these parameters in the three-dimensional chart to get the stability circles.

Fig. 14 – Low noise amplifier and stability circles

In this case, the stable region in the input stability circle is inside and in the otuput stabiliy circle is outside. Due to both reflection coefficients, S11 y S22 are into the stable regions, then the amplifier is stable.

CONCLUSIONS

In this entry I had the first contact with the three-dimensional Smith’s chart. The object was to study its potential with respect the traditional chart in microwave engineering. New advantages are observed in this respect in that it is possible to represent the infinite values ​​from the Möbius transform to a Riemann’s sphere and thus having a three-dimensional graphical tool where practically all passive and active impedances and parameters which can be difficult to draw in the traditional chart as stability circles.

In its version 1, the app, which can be found on the website 3D Smith Chart / A New Vision in Microwave Analysis and Design, shows some design options and configurations, although some applications should be undoubtedly added In future versions. In this case, one of the most advantageous applications for the chart, having studied the stability circles of an amplifier, is the location of the stability regions graphically. Although this can be solved by calculation, the visual image is always more advantageous.

The app has a user manual with examples explained in a simple way, so that the designer becomes familiar with it immediately. In my professional opinion, it is an ideal tool for those of us who are used to using Smith’s chart to perform our matching network calculations.

REFERENCES

    1. Müller, Andrei; Dascalu, Dan C; Soto, Pablo; Boria, Vicente E.; ” The 3D Smith Chart and Its Practical Applications”; Microwave Journal, vol. 5, no. 7, pp. 64–74, Jul. 2012
    2. Andrei A. Muller, P. Soto, D. Dascalu, D. Neculoiu and V. E. Boria, “A 3D Smith Chart based on the Riemann Sphere for Active and Passive Microwave Circuits,” IEEE Microwave and Wireless Components. Letters, vol 21, issue 6, pp 286-288, june, 2011
    3. Zelley, Chris; “A spherical representation of the Smith Chart”; IEEE Microwave, vol. 8, pp. 60–66, July 2007
    4. Grebennikov, Andrei; Kumar, Narendra; Yarman, Binboga S.; “Broadband RF and Microwave Amplifiers”; Boca Raton: CRC Press, 2016; ISBN 978-1-1388-0020-5

¿Fallan las encuestas electorales?

14665983216010Las recientes elecciones del día 26 vuelven a mostrar una discrepancia entre las encuestas electorales y los resultados finales. Tal ha sido la diferencia que, una vez más, se vuelve a dudar de la eficacia de las mismas como barómetro sociológico. Aprovechando las últimas entradas referentes a la Estadística, en ésta vamos a aclarar algunos términos que muestren la diferencia entre las encuestas y el muestreo final que corresponde a datos corroborados, como son las propias elecciones. Conocer estas diferencias es lo que ayudará a dar las encuestas el justo valor que se merece, sin convertirlas en algo que se tiene que cumplir necesariamente.

Como en otras ocasiones, las encuestas y los sondeos han mostrado una diferencia abismal entre las tendencias recogidas y los datos finales. Y una vez más, se vuelve a cuestionar al mensajero, porque se ha equivocado. Sin embargo, no hay tanto error, puesto que la metodología de la encuesta es correcta, sino más bien deseos de que esos resultados se reproduzcan de este modo.

Una encuesta es un estudio sociológico. Con ella se pretende tomar el pulso a una sociedad muy diversa y a la que le afectan muchas variables, muchas veces incontroladas. Se trata, pues, de indagar cómo respira un sistema caótico como es una sociedad en determinadas circunstancias y en presencia de determinados estímulos externos, a partir de la elaboración de una serie de preguntas concretas, cuya finalidad es intentar conocer lo que los humanos guardamos en mente sobre algo determinado. Sus resultados no están, por tanto, basados en datos objetivos fruto de una medición empírica, como lo es un resultado electoral, sino que son la tendencia que se puede obtener en un determinado momento de una situación a base de conocer esas respuestas. Si la metodología aplicada en la elaboración de las preguntas es correcta, los resultados también son, en ese momento correctos. Otra cosa es que se consideren esos resultados como definitivos, ya que definitivo sólo es el resultado de la medición objetiva. Una variación en las condiciones de contorno o en los estímulos externos puede variar una opinión determinada en un momento determinado.

¿Dónde vas este año de vacaciones?

Una pregunta que nos suelen hacer muy a menudo: ¿dónde vas a ir de vacaciones este año? La respuesta variará claramente en función de cuándo te hagan la pregunta. No es lo mismo que la hagan en marzo, a 5 meses de coger las vacaciones, que en junio. Depende de otras variables claras, como la situación económica, las ofertas de las agencias de viajes, si vas a ir sólo con tu familia o vas a compartir las vacaciones con otra familia amiga… Nuestra respuesta está supeditada al estímulo externo y no a un patrón determinado que marque qué es lo que voy a hacer en dos o tres meses, porque es posible que ni lo haya planificado ni lo vaya a planificar.

No obstante, en una campaña electoral, en la precampaña y sobre todo, si ha habido 6 meses de intentos infructuosos de formar un gobierno, los estímulos han sido continuos y a veces pueden provocar reacciones contrarias y efectos contraproducentes. Y el manejo de los sondeos debe de hacerse con prudencia espartana, puesto que pueden producirse descalabros como el del 26-J. Sin embargo, ha habido mucha proliferación de sondeos, casi uno cada día, cuya finalidad también puede haber sido marcar un paso o un objetivo, y ese uso indiscriminado se ha dado de bruces con el frío, duro y descarnado resultado de la medición objetiva. Aquí no cabe preguntarse si las encuestas están mal hechas, sino si ha habido intención de utilizar esa información de forma interesada y sesgada para forzar el resultado que le gustaría al que la maneja. Porque en realidad, eso es lo que ha ocurrido: se ha querido transformar anhelos en realidades.

La imposibilidad de predecir con exactitud los sucesos en un sistema caótico

Como la previsión atmosférica, la sociedad es un sistema caótico difícilmente predecible. Cuando se predice el tiempo, se acuden a modelos en los que se introducen las variables y se estudian tendencias. Se estudian también las evoluciones de días anteriores, se hacen análisis estadísticos aleatorios basados en Monte Carlo como el que he mostrado en las entradas técnicas, y con todos esos datos, se lanza una previsión. Pero, ojo, se trata de una previsión, que no una confirmación. Esa previsión se hace con un margen de probabilidad que dependerá también de las variables que afecten al sistema en ese momento y en su falta de aislamiento frente a otros estímulos. Así, que no llueva en Santander por el viento sur no es debido a que el viento sur sea una característica típica de Santander (lo que llamamos clima local), sino que detrás de la cordillera, con un clima local diferente, cambie una variable que por efecto de acción y reacción provoque precisamente la aparición del viento sur. La previsión es correcta siempre que se tenga en cuenta la probabilidad de que ocurra, dato objetivo basado en la fiabilidad del modelo que en muchas ocasiones ni se contempla ni se tiene en cuenta. Y tomamos la decisión de ir de vacaciones a Santander basándonos en esa previsión, sin analizar las probabilidades de que nuestras vacaciones terminen pasadas por agua porque los meteorólogos han dicho que va a hacer buen tiempo.

Pues no, los meteorólogos han previsto una situación atmosférica en función de los datos registrados. Eres tú el que quiere que haga buen tiempo, porque te interesa. Es el famoso sesgo de confirmación. Y claro, si tus vacaciones se van al traste, no hay nada mejor que echar la culpa al hombre del tiempo, como si éste no te hubiese dado todos los datos, probabilidad incluida, de qué es lo que podría ocurrir. Al que no le ha interesado el resto de los datos es a ti. El principal interesado en coger la parte bonita de la previsión porque entra en sus planes de vacaciones eres tú. El meteorólogo sólo ha hecho el trabajo de darte los datos, pero la decisión la tomas tú. Por eso, echar la culpa de una decisión malograda a la persona que te proporciona los datos, cuando no los has usado todos, sólo sirve de consuelo. Pero el hecho claro, el dato objetivo principal es que la decisión de ir a un sitio donde parecía que no iba a llover la has tomado tú.

¿Qué fiabilidad tienen las encuestas?

Como hemos visto en las entradas anteriores, la fiabilidad estadística en un sistema no determinista como el social depende, sobre todo, abaco blogdel tamaño de la muestra. A mayor muestra, mayor convergencia. Tanto en las mediciones objetivas como en los estudios sociológicos humanos. Hace unos años publiqué una entrada sobre los sistemas caóticos, recordando el experimento del triángulo claveteado y la canica. Este fue uno de los primeros experimentos que tuve que hacer en la asignatura de Física General, en mi época de estudiante, y debería ser obligatorio para todos los alumnos, como en Termodinámica y Mecánica Estadística fue obligatorio el de la Teoría Cinética de los Gases.

El experimento es muy sencillo: se trata de arrojar un número de canicas en un triángulo de madera que contiene filas de clavos colocadas como se describe en la figura. Al bajar la canica y pasar entre dos clavos, se encuentra con el siguiente, y el choque y el efecto de bajada hará que tome una dirección u otra. El resultado final, después de tirarte tres días tirando canicas y contando posiciones (unas 5.000 canicas), tiende a ser una distribución gaussiana. ¡Ojo! he dicho tiende, porque si se dibuja la gráfica de la función y se compara con la gráfica real obtenida, se verá que los resultados obtenidos y la curva gaussiana tienen ligeras divergencias. Nos proporciona la información de cómo puede caer una canica, pero hasta que no la tires (decisión), no puedes saber con exactitud dónde caerá.

El censo electoral de 2016 tiene inscritos a 36 millones y medio de electores. Con este tamaño objetivo de muestra, hacer fiable una encuesta de 2.000 posibles electores es bastante difícil, teniendo en cuenta la distribución de población española. No proporcionará los mismos resultados una pregunta hecha en Castilla-León o La Rioja que en Andalucía, Cataluña o Madrid. Esto es un hecho que se tiene que dar por descontado: la fiabilidad de una encuesta depende también de que la muestra, que ya es un 0,055‰ de la muestra real, sea además una representación lo más fiel posible de la realidad social de la población española. Representación bastante difícil de lograr, puesto que la diversidad de la sociedad española depende de su situación geográfica, del nivel económico de la zona, de las necesidades que se tienen, etc. Son muchas variables no controlables a tener en cuenta para lograr una fiabilidad al 100%. Por tanto, a la encuesta hay que darle un grado de confianza similar al que habría que darle a la previsión meteorológica: que es una previsión, una tendencia, pero que para nada es un dato objetivo final y que puede estar sometido a vaivenes incontrolables debido a los estímulos que afecten a la sociedad, y que no es responsabilidad de los encuestadores la existencia de esos estímulos.

Como experto en simulación que soy, tengo muy claro que no me fío de los resultados de una simulación hasta que no tengo completamente probado todo. La simulación me permite conocer de antemano tendencias y tomar una decisión, pero para nada es un resultado absoluto, ya que depende de variables que, si no las tengo definidas y las meto en el sistema, pueden proporcionarme resultados físicos contradictorios. Por eso, la simulación y la medida son experiencias interactivas, como lo deben ser las encuestas.

Este aluvión de encuestas y sondeos, con la inclusión del ya famoso mercado de la fruta andorrano, ha hecho que la campaña se haya dirigido más a tratar de cumplir los vaticinios que a estudiar los vaivenes sociales. Se ha tratado más de lograr aproximar los optimistas datos de las encuestas al resultado objetivo de la medición, que son las elecciones generales, sin tener en cuenta que esos datos sólo eran previsiones puntuales. Y esto ha provocado en muchas personas una sensación brutal de frustración. Una frustración similar a la que sufrió el veraneante que fue a Santander pensando en la bonita previsión del tiempo y tuvo que comprarse un paraguas porque en la vecina provincia de Burgos cambió la presión atmosférica debida a un cambio brusco de temperatura.

No obstante, tiene que seguir habiendo encuestas. No se puede pretender conocer la realidad de una sociedad sin preguntar y esto se tiene que seguir haciendo. Pero siempre sin perder el norte: no es un dato objetivo fruto de una medición definitiva, sino la trayectoria de la canica o el hecho de que en Burgos haya caído la temperatura. Y eso tiene que ser correctamente utilizado por quienes necesitan pulsar a la sociedad.1466915869_295178_1466977429_noticia_normal

 

La estadística y su correcto uso


importancia-graficos-estadistica_image007Una de las herramientas más usadas en la actualidad, sobre todo desde que tenemos máquinas que son capaces de computar muchos datos, es la estadística
. Se trata de una potente herramienta que, bien utilizada, puede proporcionarnos previsiones, sobre todo en sistemas caóticos. Dentro de este tipo de sistemas podemos incluir desde fenómenos atmosféricos a comportamientos de grupos humanos, aunque también se usa para resolver problemas en sistemas deterministas, cuando aparecen fenómenos no previstos que hay que corregir. En estos tiempos, el uso de la estadística se ha extendido a todos los ámbitos, si bien hay que responder a una clara pregunta: ¿de veras sabemos utilizarla? ¿O sólo extraemos las conclusiones que a nosotros nos interesan? En esta entrada voy a tratar de mostrar algunos términos que hay que tener en cuenta en la mecánica estadística y cómo se deberían interpretar sus resultados.

 Por estadística podemos entender dos cosas:

  • Es la herramienta matemática que utiliza conjuntos de datos numéricos, que representan sucesos, para obtener resultados basados en el cálculo de probabilidades.
  • Es el estudio que reúne y clasifica todos los sucesos que posean alguna característica en común, para que con esa clasificación se puedan extraer conclusiones.

En estas dos definiciones tenemos dos conceptos diferentes: el primero, la estadística como disciplina matemática mecánica, con unas reglas claras basadas en la clasificación y el cálculo de probabilidades. Una herramienta que casi todas las disciplinas humanas, ya sean científicas, tecnológicas o sociales, tienen que usar para extraer conclusiones.

Por otro lado, tenemos el estudio estadístico, que no es estadística como disciplina, pero que se suele utilizar dicho término para referirse a él. La segunda definición está englobada en la primera, porque el estudio estadístico es el recuento de determinados sucesos para extraer una conclusión. Por tanto, la estadística, como tal, no muestra resultados, sólo clasifica los sucesos. Sólo nosotros somos los capacitados para interpretarlos.

Una de las frases a las que suelo recurrir muchas veces, cuando alguien me blande estadísticas como hechos incontestables, es un estudio estadístico muestra que las personas comemos un pollo a la semana. Esta semana yo me he comido dos pollos y tú ninguno, así que te deseo que te siente bien el pollo que no has comido. Uno de los mayores errores que se pueden cometer es el considerar a la estadística como un hecho incontestable, cuando sólo son datos agrupados. El hecho, que puede ser incontestable o no, es la interpretación que podamos hacer de esos datos, y ésta puede ser errónea si no aplicamos las reglas mecánicas de la estadística. Estas reglas se encuentran en la Teoría de Probabilidades, donde se definen una serie de herramientas a tratar en la disciplina para lograr obtener mejores interpretaciones. Si estas reglas no son utilizadas, las interpretaciones pueden ser de lo más variopintas.

La importancia de la estadística es tal, que hasta los Estados tienen departamentos exclusivos para trazar los estudios, interpretar los resultados y poder actuar en función de los mismos. El problema radica en cuando se transmiten esos datos a la sociedad, cómo se transmiten, qué porcentajes de error pueden presentar, qué correlación existe entre los sucesos y que conclusiones extrae el que los maneja, que es el que conoce todos los datos y los ha interpretado. Hay que tener en cuenta que la mayor parte de la población no tiene porqué saber más estadística que la estudiada en las matemáticas de la ESO y el Bachillerato, y que la estadística es una mecánica mucho más compleja que contar las caras de un dado y asignar una probabilidad.

Los sucesos, lo único medible de la estadística

Los sucesos, en la estadística, son los datos que se quieren medir. Y los sucesos pueden ser de varios tipos: elementales, compuestos, seguros, imposibles, compatibles, independientes, dependientes y contrarios. Dependiendo de lo que se vaya a estudiar, hay que clasificar los sucesos, que es lo único medible de la estadística.

Los sucesos, de por sí,  no proporcionan conclusiones. Las conclusiones se obtienen de su clasificación. Y la clasificación, para que las conclusiones sean realmente resultado de un estudio estadístico, son fruto de pasar por las reglas establecidas en la mecánica estadística.

Un ejemplo de violación de las reglas estadísticas se pueestudiode ver en el reciente debate de 13-J, donde los cuatro líderes de los partidos principales son sometidos al juicio del público. Según la captura de imagen, uno de los líderes ya era ganador antes de que el suceso medible ocurriese.

En cierto modo, podríamos pensar que la foto está trucada, y es una posibilidad a tener en cuenta, pero teniendo en cuenta también  que dicha estadística no pasa por las reglas establecidas de la estadística, independientemente de que sea o no verdadera la foto, los resultados no se pueden presentar como un estudio estadístico y sus conclusiones posteriores no se pueden tomar como válidas, aunque a algunos les guste el resultado.

Es en este punto cuando la estadística toma su más siniestra utilización: manipulación de los resultados.

El incorrecto uso de la estadística: la manipulación

Debido a que la mayoría de la población desconoce las reglas establecidas para el estudio estadístico (definición de sucesos, tamaño de las muestras, criterios de medición, estimaciones sobre resultados, contrastes de hipótesis, etc.), aquí vuelve otra vez a aparecer mi frase favorita acerca del consumo de pollo por la población: se publican los resultados y no los criterios que han llevado a esos resultados, por lo que aparece un elemento de manipulación evidente, ya que se están utilizando los datos bajo criterios evidentemente orientados a conseguir una respuesta determinada. La estadística no tiene esa función, su función es proporcionarnos los datos para mostrarnos tendencias que permitan corregir aquellas cosas que necesiten corrección, o poder determinar resultados cuando los sistemas son caóticos.

falsa encuestaHemos visto lo que un periódico digital publica antes de tiempo, pero podemos ver otra encuesta en la que también se observa una clara manipulación, ésta cortesía de 13TV. En esta “encuesta” se pregunta a los telespectadores quién ha ganado el debate del pasado lunes. Recordemos que en ese debate había cuatro líderes políticos, y la cadena de la Conferencia Episcopal ha eliminado, de un plumazo, a dos de ellos.

Podemos entender que no son santo de devoción ni de los periodistas de la cadena ni de sus principales accionistas, pero teniendo en cuenta quiénes son esos accionistas, tendrían que pensar en cierto mandamiento que ellos deberían cumplir a rajatabla porque forma parte de su doctrina: “No levantarás falso testimonio ni mentirás”. Parece ser que aquí se vuelve a recurrir al maquiavélico principio de que “el fin justifica los medios”, pero no sabía que la Iglesia Católica española tuviese al célebre escritor renacentista florentino entre sus bases doctrinales.

Podemos poner más ejemplos de encuestas y estudios estadísticos sesgados, más orientados a obtener una respuesta en la población que a analizar un suceso concreto. Osea, se tienen las conclusiones y hay que crear un espacio de sucesos y unos criterios de medición que permitan llegar a esas conclusiones, lo que vulnera las reglas de la estadística y, por tanto, se convierten en mero discurso manipulador para generar un estado de opinión y no una interpretación acertada de la realidad.

La estadística tiene que ser fría

Así es, aunque seamos humanos y tengamos sentimientos y las cosas nos afecten, para hacer un estudio estadístico hay que librarse de juicios previos y de ganas de obtención de resultados que nos den la razón y que se ajusten a nuestros deseos. Los sucesos se deben de obtener mediante la fría medición, sin ninguna intervención sobre ella. Por eso, la definición del espacio de muestras y de los sucesos debe de ser independiente a nuestros deseos y afinidades. Si no es así, el estudio carece de validez y no proporciona nada más que consuelo o euforia, cuando no es engañarnos a nosotros mismos.

Otra cosa es la elaboración de conclusiones e hipótesis, la célebre cocina a la que las empresas de estadística someten los resultados. Pero la validez del estudio sólo será aceptable si son conocidos los criterios para cocinar los resultados. Es una norma estadística básica y que debe de ser conocida y aceptada por el receptor para estimar si las conclusiones son acertadas o simplemente son fruto de una manipulación orientada a volver a obtener algo que nos guste y crear estados de opinión.

Es importante comprender que la estadística, como herramienta que nos ayuda a obtener hipótesis, es una magnífica herramienta. Pero que en malas manos, se transforma en algo odioso y pierde su verdadera utilidad.

 

¿Hacen su labor los medios respecto a la forma de tratar los conocimientos científicos?

trudeauDejando un poco aparte (al menos, hasta el próximo mes) la divulgación técnica pura, recientemente me he encontrado con una noticia en varios medios que me ha parecido, cuanto menos, sorprendente. No porque el Primer Ministro canadiense sepa bastante de Mecánica Cuántica, ya que podría estar sorprendido en el caso de que conociese su trayectoria académica y en ésta no describa si ha estudiado o no sobre el tema, sino por el grado de desconocimiento que algunos periodistas tienen de las personas a las que están preguntando, que pueden provocar patinazos (o como se dice en el argot de Twitter, “zascas en toda la boca”) como el del que se han hecho eco nuestros medios. Por este motivo, me he lanzado a escribir una entrada de opinión sobre el tema, retomando de algún modo uno de los apartados que quise siempre para este blog, que fuese también un lugar de divulgación para todos los públicos y no sólo para los muy técnicos. Con ese compromiso retomo desde hoy la inclusión de entradas no exclusivamente técnicas, que estén relacionadas, como siempre, con el mundo científico y tecnológico y sus avances.

LA ACTITUD DE POLÍTICOS Y PERIODISTAS FRENTE A LOS CONOCIMIENTOS CIENTÍFICOS

Recientemente, la prensa vulgarmente llamada “seria” se ha hecho eco de un hecho que, parece ser, consideran “anormal”: que un Primer Ministro, además de tener ese cargo, dé una clase magistral de Computación Cuántica a un periodista que quiso pasarse de listo, cuando requirió a Justin Trudeau que le explicase algo sobre dicho tema. Ni corto ni perezoso, el mandatario canadiense no sólo le contestó sino que le dio una clase magistral de 35 segundos a un periodista que creyó que ésta era la suya.

Vivimos unos tiempos en los que parece que el pensamiento crítico más elemental ha desaparecido de algunos despachos oficiales y algunas líneas editoriales, y que se juzga más a la gente por un tuit equivocado que por una larga trayectoria, sin que se haga el más mínimo esfuerzo en conocer a quién te diriges cuando le preguntas. Algo que debería ser elemental para cualquier profesional de los medios de comunicación: si quieres saber cómo te va a contestar y si te va a contestar a una pregunta, primero estudia la trayectoria del interrogado, para que sepas hacerle la pregunta.

Parece ser que a los medios les sorprende que Justin Trudeau sepa de Computación Cuántica porque muchos de los lectores eso les suena a chino mandarín, también en parte gracias a la pésima labor de divulgación de algunos medios escritos, que suelen equiparar ciencia con pseudociencia, como si ambas estuviesen en el mismo nivel, alegando esa excusa de que todo el mundo tiene derecho a que se les proporcione información. Lo que pasa es que se les suele olvidar el adjetivo milagroso: veraz.

Cierto es que muchos políticos carecen de conocimientos científicos, y algunos hasta adolecen del más elemental conocimiento acerca de lo que significa el mundo científico y sus avances, usándolo sólo los mismos cuando se trata de hacerse una foto frente a un científico famoso cuando ha ganado algún premio. Un caso paradigmático fue el del Dr. D. Severo Ochoa: cuando ganó el premio Nobel, el régimen imperante en España se acordó de él y le quiso repatriar con promesas de inversiones y laboratorios, cuando unos años antes ese mismo régimen no le concedía ni el pasaporte para poder salir de la Alemania nazi. Muchos políticos adolecen de esa falta, pero también es cierto que otros tienen cultura científica, sin que la prensa les preste atención cuando opinan de algo que no sea la pura palestra política.

¿DE QUÉ NOS EXTRAÑAMOS SI HEMOS TENIDO POLÍTICOS CON DOS TITULACIONES Y HASTA LAS EJERCÍAN?

boyer1-aEsta prensa que hoy está jaleando a Trudeau, convirtiendo en noticia algo que no debería serlo tanto, es la misma prensa que obvió o que no concedió interés a un artículo de Miguel Boyer Salvador, ex-Ministro de Economía del primer gabinete de Felipe González, en el que el recientemente fallecido economista hacía una disertación acerca del dilema que supondría si los resultados obtenidos en el proyecto OPERA en 2011 (neutrinos viajando a una velocidad más alta que la de la luz) se verificaban. En su etapa más joven, Miguel Boyer, Licenciado en Ciencias Económicas y Ciencias Físicas, también opinaba sobre temas científicos y sobre la filosofía de la ciencia. No era, pues, un político inculto científicamente pues de cuando en cuando, el ex-Ministro de Economía se dejaba caer por Universidades de Verano siendo participante o ponente de cursillos que no eran ni estrictamente políticos ni económicos.

Aunque este artículo se hubiese publicado después de la clase magistral de Trudeau, los periodistas hubiesen seguido sin prestarle atención, puesto que el titular era que hay un político que no es inculto y que sabe de Mecánica Cuántica, como si hubiesen probado la existencia de los unicornios, en lugar de haber estudiado antes la biografía de Justin Trudeau y su brillante trayectoria académica, en la que se destaca, aparte de su Licenciatura en Educación, sus estudios de ingeniería en la Politécnica de la Universidad de Montreal y su Maestría en Geografía Medioambiental en la Universidad McGill, lo que viene a mostrar a un hombre que se preocupa por formarse cuando quiere dotarse de una opinión contrastada. Desgraciadamente, aquellos políticos que adolecen de esa falta de rigor, tratando con desdén los conocimientos científicos y a las personas que los generan, tapan la brillantez de otros políticos que sí que se preocupan de su autoformación. Estos últimos los hay, existen, pero no son tan noticia para una prensa que un día publica el descubrimiento del Bosón de Higgs y al día siguiente, en el mismo apartado de Ciencia, una disertación sobre los peligros de las ondas electromagnéticas no ionizantes, si bien es cierto que la camada de políticos más brillantes de la reciente Historia de España se ha dado, precisamente, en la Transición. Hoy en día, muchos políticos lo son de carrera, ascendiendo dentro del propio partido sin haber tenido experiencia previa en otro sitio diferente.

Sin embargo, con el perfil de estos políticos también aparece el perfil del periodista que desdeña la labor de proporcionar esa información veraz. Porque la información tiene que ser eso, veraz, ya que la prensa de hoy día será la fuente de la Historia de mañana, como los autores clásicos del mundo romano nos permiten conocer cómo era su tiempo y sus costumbres.

No se puede tampoco meter en este saco a todos los periodistas, puesto que los hay muy brillantes dentro de esta profesión. Pero sí hay que indicar que la tendencia a vivir a ritmo de tuit en lugar de hacer la pesada y ardua labor de documentarse previamente está causando, en mi opinión, estragos entre lo que debería ser la diferencua entre una información veraz y puro rumo, cotilleo o “chisme”.

Hoy en día, el  mundo científico español y, sobre todo, nuestros científicos están sufriendo, por un lado, la apatía de quienes gobiernan actualmente nuestro país, cuyo rigor a la hora de tratar este conocimiento es poco menos que nulo, despreciando un modelo productivo basado en el valor añadido del conocimiento, y basándose en el agotado modelo del yo te lo hago más barato, condenando con esa política por un lado, a limitar el crecimiento de nuestro país, y por otro, a la mal llamada movilidad laboral de nuestros científicos, obligados a tener que coger las maletas y ejercer su profesión en centros de investigación y laboratorios de otros países, donde este conocimiento no es desdeñado sino que se ve como una oportunidad.

Y ésa debería ser la labor de la prensa llamada “seria”: centrar la importancia en el conocimiento científico y evitar el recurso fácil de reproducir titulares facilones para atraer más público, así como dejar de situar al mismo nivel este conocimiento y la falta de evidencia de las pseudociencias. Porque el hecho de que haya políticos incultos científicamente no convierte a los que publican noticias en expertos en ciencia. Dentro del mundo periodístico hay incultos científicamente como los hay en casi todas las profesiones no relacionadas con éste ámbito. Así que espero que el “zasca” a este periodista retome un poco la deontología de que cualquier entrevista, editorial o titular debe de estar tan rigurosamente documentada en fuentes como lo está un artículo sobre la Física de Plasmas.

REFERENCIAS

  1. Boyer Salvador, M.,”Dilema radical en la física: “Einstein, ¿sí o no?”“,El País, 6/10/2011
  2. Boyer Salvador, M.,”Popper y los nuevos filósofos de la ciencia“, El País, 7/11/1984
  3. Delgado, J.,”Boyer defiende la libertad como valor absoluto en el seminario sobre Popper“, El País, 31/07/1991
  4. Justin Trudeau, Wikipedia
  5. Justin Trudeau, Liberal Party Website
  6. Miguel Boyer Salvador, Wikipedia