Archivo de la etiqueta: nuevas tecnologías

La importancia de una divulgación seria y contrastada

Ni que decir tiene que la divulgación científica o tecnológica debe de ocupar un lugar importante en nuestra sociedad. Y es tarea de los medios de comunicación ofrecer una información lo más asequible posible a aquellas personas cuya formación técnica no les permite comprender totalmente los hechos descubiertos. Esto, desgraciadamente, no ocurre, buscando un titular sensacionalista y desechando cualquier mínimo rigor en la noticia. En esta entrada vamos a analizar un reciente “paper” publicado en la revista NATURE, cómo lo han tratado los diferentes medios y cómo en realidad tendría que haber sido un análisis riguroso del artículo publicado.

Por mi profesión, tengo que ser consumidor compulsivo de “papers”. Está en mi ADN profesional. Y por ese hecho tengo que estar alerta a las últimas novedades que se puedan dar en el “estado del arte”. Es algo complicado teniendo en cuenta que diariamente se publican cientos de artículos, unos en revistas de impacto y otros en páginas y blogs con menos importancia, además de aquellos que se pueden publicar en revistas y boletines de asociaciones científicas mundiales. El mundo del “paper” científico no es un mundo, precisamente, pequeño.

A veces llegas a un artículo de impacto gracias a los medios de comunicación, gracias a sus secciones técnicas y científicas. Sin embargo, últimamente estas secciones están dejando mucho que desear en cuanto a la presentación del artículo, a su relevancia y a lo más importante, qué representa realmente.

Como mi especialidad es el Electromagnetismo, recientemente he encontrado una serie de noticias con las que, en realidad, no sé qué quedarme. El “paper” en cuestión [1] está escrito por un equipo del MIT (Instituto de Tecnología de Massachusetts, considerado como uno de los centros tecnológicos más prestigiosos del mundo), dirigido por el Prof. Tomás Palacios y en el que han intervenido un nutrido grupo de ingenieros y tecnólogos mundiales.

Este artículo muestra el diseño de una rectena que se puede usar para captar la energía electromagnética presente en la banda de WiFi (2.45 GHz, 5.8 GHz), mediante una antena flexible y un semiconductor de muy bajo perfil. Ante todo, lo que representa el artículo es la posibilidad de hacer antenas flexibles con espesores muy finos, con buena eficiencia, frente a las actuales rectenas usando semiconductores convencionales. En el artículo, los ingenieros han usado un semiconductor basado en el disulfuro de molibdeno (MoS2), un material muy usado en aplicaciones como lubricantes y refinación petrolífera. El hecho de que tenga una banda prohibida entre la banda de conducción y la de valencia hace que este material pueda ser usado en la construcción de dispositivos semiconductores como los diodos.

Sin embargo, el disulfuro de molibdeno tiene una movilidad electrónica baja frente a los semiconductores convencionales de silicio o arseniuro de galio, lo que limita la banda de frecuencias en el que se puede usar. Lo que los autores del “paper” han logrado es llegar a una frecuencia de corte usando este semiconductor como diodo rectificador de 10 GHz. Lo cual es un logro evidente. La cuestión es ¿cómo se trata en los medios este avance?

TITULARES SENSACIONALISTAS EN BUSCA DE CLICS

Pongo sólo dos artículos encontrados en los medios, como referencia, aunque por supuesto tenemos muchos más y casi todos han caído en el mismo sensacionalismo. El artículo de El Mundo [2] titula “Un científico español crea una antena capaz de convertir en electricidad la señal WiFi”. Si bien es cierto que el Prof. Palacios, además de ser español, es el director del equipo multinacional de ingenieros del MIT que han conseguido el logro del que hablaba antes, hay que indicar al redactor de la noticia que todas las antenas, desde que se utilizan, convierten la señal WiFi (o la de radio, o la de TV, es lo mismo) en señal eléctrica PORQUE SON SEÑALES ELÉCTRICAS. No son ectoplasmas, ni algo esotérico que viaja por el aire. Se generan mediante equipos eléctricos y por tanto, son susceptibles de ser captadas por otros equipos eléctricos. Si no, no habría comunicaciones inalámbricas como las que llevamos emitiendo desde que Hertz hiciera su primera transmisión radiada en 1887 (ya ha llovido desde entonces). El titular, que también reproduce Vozpopuli [2] con la misma intención (y casi todos han reproducido lo mismo), demuestra que no se ha hecho una verdadera revisión de estilo y menos se ha consultado éste con expertos en el tema.

El artículo de El Mundo parece que pretende ser una entrevista con el Prof. Palacios. Pasa lo mismo con el de Vozpopuli, aunque dudo mucho que ningún medio español haya acudido al MIT a entrevistar al director de este equipo de tecnólogos. Más bien creo que están usando alguna entrevista realizada al ingeniero y de esa forma desarrollan la noticia. Aunque la proximidad de la publicación del “paper” en Nature (todo se publica el mismo día 28 de enero) me muestra que habrán buscado una publicación americana y habrán traducido con el Google Translate. No sería la primera vez.

En el artículo de El Mundo hay una frase que todavía rechina en mis oídos: “Los ingenieros han conseguido desarrollar una antena que captura las ondas electromagnéticas, incluidas las que se transmiten en una conexión inalámbrica, en forma de corriente alterna”. Habría que decirle al autor que todas las antenas son capaces de capturar las ondas electromagnéticas, INCLUIDAS LAS QUE SE TRANSMITEN EN UNA CONEXIÓN INALÁMBRICA PORQUE SON ONDAS ELECTROMAGNÉTICAS. De hecho, su router inalámbrico tiene antenas, ya sean externas (ésas se ven) o internas (para verlas hay que desmontar el equipo). Pero toda onda electromagnética radiada se capta con antenas, no sólo la WiFi, sino la radio convencional, la TV y las señales de satélite.

Vozpopuli tampoco trata con rigor el “paper”. Iniciando con un “Imagine un mundo en el que los teléfonos móviles, los ordenadores portátiles y el resto de dispositivos se cargaran sin baterías y de manera remota”, cometen un despropósito del tamaño de un camión: si los móviles no tienen baterías… ¿qué vas a cargar? Lo que se cargan son las baterías, la electrónica de un móvil necesita una alimentación de DC para poder funcionar y eso se lo proporciona la batería. Y ya hay cargadores inalámbricos para móviles, usados precisamente para cargar la batería. Lo que pasa es que esos cargadores se basan en acoplamientos inductivos en campo cercano y no en la energía radiada en el espacio libre. Lo coherente hubiese sido decir Imagine un mundo en el que su móvil no tenga batería y se alimente a través de la emisión de radio presente en el espacio. Muy futurista e hiperoptimista (mucho tienen que bajar los consumos de los móviles para poder alimentar con energías tan bajas los dispositivos electrónicos que contienen), pero por lo menos se ajustaría más a lo que es el “paper” publicado.

Otro de los despropósitos de Vozpopuli se da cuando dicen que los dispositivos capaces de convertir ondas electromagnéticas de corriente alterna en electricidad se conocen como “rectennas” y hasta ahora eran rígidas y basadas en materiales demasiado caros para producirlos a gran escala. Que son rígidas, es cierto, pero que están basadas en materiales demasiado caros para producirlos a gran escala es una patraña. La mayor parte de las rectenas que aparecen en los cientos de “papers” publicados mundialmente suelen ser semiconductores de uso general, y bastante más baratos que el tratamiento industrial del disulfuro de molibdeno como semiconductor. De hecho, no hay semiconductores electrónicos en el mercado industrial hechos con disulfuro de molibdeno, por lo que, por ahora, la tecnología desarrollada en el MIT, hasta que no se logre un escalado industrial, es como los coches de Elon Musk: caros, con poca autonomía y con plazos de entrega al cliente de eones.

Pero El Mundo no le anda a la zaga cuando dice que en concreto la antena ha llegado a producir unos 40 microvatios de potencia, expuesta a niveles de potencia típicos de las señales WiFi -en torno a 150 microvatios-, una cantidad que según los autores es más que suficiente para iluminar una pantalla de móvil o activar chips de silicio. Aunque de momento son prudentes, sus creadores esperan que la nueva tecnología se pueda materializar en los próximos años. Sí, 40 μW pueden mantener en modo SLEEP un microprocesador sin consumir la batería del dispositivo móvil, permitiendo que se active cuando se necesita usar (entonces tirará de la corriente de la batería), pero para nada será suficiente cuando se quiera activar el amplificador que tiene que emitir la señal GSM, con un pico de emisión de 4 W. Ahí, los 40 μW son como tratar de subir 1000 veces seguidas el Everest. En este caso, lo más lógico es indicar que se obtiene una eficiencia bastante alta con señales muy bajas, ya que si la señal generada en la antena por el campo radiado por un router WiFi es 150 μW (-8,2 dBm) , la eficiencia es del 27% y eso se logra en las rectenas actuales de silicio y arseniuro de galio.

En fin, el tratamiento dado a la noticia es un cúmulo de incorrecciones que se podrían haber solventado publicando la noticia al día siguiente o incluso con dos días, pero bien publicada y con un lenguaje cercano al profano, pero asesorado por un técnico. Mi lenguaje es demasiado técnico y es labor del periodista traducirlo a un lenguaje entendible por su público, no acostumbrado a temas técnicos.

COMO SE DEBERÍA HABER TRATADO LA NOTICIA

Para tratar la noticia en la justa medida, primero hay que leerse el “paper”, para comprender lo que en realidad se ha logrado. En realidad, el “paper” no presenta sueños etéreos de un futuro en el que las paredes de casa van a ser enormes antenas. Con su lenguaje técnico, muestra una serie de experimentos realizados sobre una rectena hecha en perfiles flexibles, y esto es un logro porque los materiales que se habían usado hasta el momento para hacer rectenas flexibles no llegaban a la frecuencia de corte a la que han llegado los tecnólogos del MIT. Con este logro, se puede captar la señal eléctrica que hay en el ambiente y lograr optimizar el consumo de baterías, de modo que el móvil no quite carga a la batería mientras está en modo SLEEP, y estas rectenas pueden ser integradas en dispositivos móviles en las próximas generaciones.

Obviamente hay que procesar debidamente el MoS2 para conseguir el escalado industrial necesario, ya que antenas en formato flexible se fabrican en la actualidad y hay para todos los gustos: de banda estrecha, de banda ancha, multibanda, etc. Pero aunque en los artículos hablen de que con esta tecnología ya no necesitaremos extraer litio para las baterías, hay que recordar también que el disulfuro de molibdeno es un mineral y hay que extraerlo de la tierra, que no crece en los árboles.

Por supuesto que felicito al Prof. Palacios y a su equipo por el logro conseguido, recordando también que la ciencia no tiene nacionalidad y que no es una competición. Tampoco es bueno tratar estas noticias como si hubiese ganado Nadal un Grand Slam o Alonso las 24 horas de Le Mans. El equipo es multinacional como todo lo que se hace en el mundo investigador: recurres a los mejores, sin importar la nacionalidad, porque sus resultados contribuyen al cuerpo del conocimiento y al estado del arte.

REFERENCIAS

    1. Zhang, Xu et al.,”Two-dimensional MoS2-enabled flexible rectenna for Wi-Fi-band wireless energy harvesting“, Nature, Ene. 28, 2019, DOI: 10.1038/s41586-019-0892-1
    2. Herrero, Amado, “Un científico español crea una antena capaz de convertir en electricidad la señal WiFi“, El Mundo, Ene. 28, 2019
    3. Un ingeniero español crea la primera antena que convierte el WiFi en electricidad“, Vozpopuli, Ene. 28, 2019
Anuncios

Influencia de los campos electromagnéticos en la dinámica de los fluidos

la_caza_del_submarino_rusoAunque parezca lo contrario, en esta entrada no vamos a hablar de novelas de espías, pero sí vamos a usar un argumento de la trama de una conocida novela de espionaje para presentar la teoría magnetohidrodinámica. Ésta es una disciplina de la física, que forma parte de la teoría de campos y analiza el movimiento de fluidos con carga eléctrica en presencia de un campo electromagnético y sus posibles aplicaciones. Comprendiendo los principios de la dinámica de fluidos, llegaremos a las ecuaciones que constituyen la base de la teoría, sus conclusiones y su actual utilización.

Los que conozcan la trama de la novela de Tom Clancy “The hunt of Red October”, sabrán que trata sobre la deserción de un submarino soviético de la clase Typhoon, dotado de un sistema de propulsión silencioso y difícilmente detectable por el sonar. En la novela, se le describe como “propulsión magnetohidrodinámica” y consiste en generar flujo de corriente hidráulica a lo largo de la nave usando campos magnéticos. Este flujo permite su desplazamiento sin usar los motores convencionales, aprovechando las características conductivas del agua salada. Este sistema de propulsión silenciosa convertía a la nave en algo letal y peligroso de verdad, puesto que podría acercarse a la costa de los EE.UU. sin ser detectado y lanzar un ataque con cabezas nucleares sin que nadie lo pudiese evitar. Esta es la trama, pero, ¿cuánto hay de cierto en la misma? ¿Existe un método de propulsión o un sistema que provoque el movimiento de un fluido por la presencia de un campo electromagnético? ¿Y a la inversa? ¿Podemos generar un campo electromagnético sólo usando el movimiento de un fluido cargado?

Aunque pueda parecer que, al tratarse de una novela de espías y acostumbrados como estamos a la tendencia de la ficción a crear ciertas bases argumentales, a veces ilusorias, para dotar de cierto dramatismo a la trama, lo cierto es que la teoría magnetohidrodinámica es muy real. Tanto, que el primer efecto destacable de la misma lo podemos comprobar simplemente con la presencia del campo magnético terrestre. Este es fruto del movimiento del núcleo interno de la tierra, compuesto de una capa de hierro líquido (fluido) que envuelve a una gran masa de hierro sólido. Este núcleo , que se mueve acompasado por la rotación de la Tierra, tiene cargas en movimiento que generan una corriente eléctrica, y esa corriente eléctrica genera el campo magnético que protege a la Tierra de los embates de partículas de alta energía que proceden de nuestra estrella, el Sol.

El propio Sol, que es una nube de gas en estado de plasma, tiene poderosos campos magnéticos que determinan el movimiento de las partículas que constituyen el plasma en su interior. Por tanto, la teoría magnetohidrodinámica que usa Clancy en esa trama es muy real. Vamos entonces a desvelar sus bases.

DINÁMICA DE FLUIDOS: LAS ECUACIONES DE NAVIER–STOKES

Un fluido es un medio material continuo formado por moléculas donde sólo hay fuerzas de atracción débil, que se encuentra en uno de estos tres estados de la materia: líquido, gaseoso o plasma. La dinámica de fluidos es la parte de la física que se ocupa del estudio del movimiento de estos medios en cualquiera de estos estados, siendo la masa del fluido la parte que se desplaza de un punto a otro.

Del mismo modo que en campos electromagnéticos definíamos la corriente eléctrica como la variación de la carga con el tiempo, en los fluidos hablaremos de un flujo de corriente ψ que es la variación de la masa M del fluido respecto del tiempo.

{\psi}=\dfrac{dM}{dt}=\dfrac{d}{dt} \displaystyle \int_V {\rho}_M dV

Si tomamos una superficie donde hay ni partículas de masa mi que se mueven a una velocidad vi, podemos definir una densidad de flujo de corriente ℑM, que se expresa como

{\vec{\mathcal J}}_M=\displaystyle \sum_i N_i  m_i  {\vec {v}}_i=N  m  {\vec {v}}=M  {\vec {v}}

d{\psi}=\left( \displaystyle \sum_i N_i  m_i  {\vec {v}}_i \right) \vec{n} dA={\vec{\mathcal J}}_M  \vec{n}  dA

Flujo de corriente debida a partículas de masa m

Flujo de corriente debida a partículas de masa m

Vamos a considerar, como se muestra en la figura, que nuestro fluido es un medio material que tiene todas las partículas de la misma masa, por lo que el producto ni⋅mi se puede extraer del sumatorio, quedando entonces una velocidad v  que es la suma vectorial de todas las velocidades de las partículas del fluido.

La relación entre el flujo de corriente y la densidad de flujo de corriente es una integral a lo largo de una superficie S. Si integramos el flujo de corriente total en una superficie cerrada, por la conservación de la masa, tendremos que es igual  es la variación de la masa con respecto al tiempo, y siendo la densidad la masa por unidad de volumen, podemos escribir que

{\psi}=- \displaystyle \oint_S {\vec{\mathcal J}}_M \vec{n}  dA =\displaystyle \int_V \dfrac {d{\rho}_M}{dt} dV

Como este flujo de corriente se opone a la variación de la masa respecto del tiempo, y la masa es la integral de volumen de la densidad del fluido ρMy aplicando el teorema de la divergencia, podemos escribir esta expresión en su forma diferencial

-\vec{\nabla} \vec{J}_M = \dfrac {d{\rho}_M}{dt}

que es la ecuación de continuidad de un fluido y que representa la conservación de la masa neta dentro del fluido. Esta es una de las ecuaciones de Navier-Stokes, primordial para comprender el movimiento de las partículas del fluido.

Para la otra ecuación, debemos de recurrir a la derivada sustancial. Esta es una descripción que incluye no sólo la variación con respecto al tiempo de la magnitud física del fluido, sino que además incluye la variación de la misma respecto de la posición. La expresión de la derivada sustancial es

\dfrac {d}{dt}(*)=\dfrac {\partial}{\partial t}(*)+\vec{v} \vec{\nabla}(*)

donde v es la velocidad del fluido y  el operador diferencial que ya vimos en la entrada sobre radioenlaces. Como el momento lineal del fluido se conserva, cuando interviene la fuerza de la gravedad , actúa además una presión P en sentido contrario al movimiento en el fluido y contraponiéndose a las deformaciones una viscosidad μobtenemos que

{\rho}_M  \dfrac {d \vec{v}}{dt}=\vec{F}-\vec{\nabla}P+{\mu} \left( \dfrac {1}{3} \vec{\nabla}  \left(\vec{\nabla}  \vec{v} \right) + {\nabla}^2 \vec{v} \right)

\dfrac {\partial \vec{v}}{\partial t}+ \left( \vec{v} \vec{\nabla} \right) \vec{v} + \dfrac {1}{{\rho}_M} \vec{\nabla}P- \dfrac {\mu}{{\rho}_M}\left( \dfrac {1}{3} \vec{\nabla} \left(\vec{\nabla} \vec{v} \right) + {\nabla}^2 \vec{v} \right)=\vec{g}

Esta es la ecuación del movimiento de un fluido, y es no lineal debido a la derivada sustancial. Por tanto, en un fluido intervienen no sólo las fuerzas aplicadas en el fluido, sino también la presión de éste y su viscosidad. Si el fluido no presentase viscosidad, y aplicando la derivada sustancial  a la ecuación anterior, podemos obtener un caso particular

\dfrac {\partial \vec{v}}{\partial t}+ \left( \vec{v} \cdot \vec{\nabla} \right) \vec{v} + \dfrac {1}{{\rho}_M} \vec{\nabla}P=\vec{g}

que nos define la ecuación del movimiento de un fluido no viscoso.

DINÁMICA DE FLUIDOS: MAGNETOHIDRODINÁMICA

Si el fluido presenta partículas cargadas y aplicamos un campo electromagnético, con componentes E y B, la fuerza que interviene en este caso no es la gravedad, sino la fuerza de Lorenz que aplica el campo magnético

\vec{F}=\vec{J} \times \vec{B}=\dfrac {\left( \vec{B} \cdot \vec{\nabla} \right) \vec{B}}{{\mu}_0}-\vec{\nabla} \left(\dfrac {B^2}{2{\mu}_0} \right)

donde J es la densidad de corriente eléctrica en el fluido y B el campo magnético aplicado. En la expresión desarrollada, obtenida a partir del desarrollo de la Ley de Ampere y una de las identidades del operador diferencial , obtenemos dos términos. El primero es una fuerza de tensión magnética mientras que el segundo término se asemeja a una presión magnética producida por la densidad de energía magnética del campo. Sustituyendo F en la expresión obtenida en el apartado anterior y considerando un fluido no viscoso, tendremos que

\dfrac {\partial \vec{v}}{\partial t}+ \left( \vec{v} \cdot \vec{\nabla} \right) \vec{v} + \dfrac {1}{{\rho}_M} \vec{\nabla} \left(P+\dfrac {B^2}{2{\mu}_0} \right)=\dfrac {\left( \vec{B} \cdot \vec{\nabla} \right) \vec{B}}{{\rho}_M {\mu}_0}

Teniendo en cuenta que, según las ecuaciones de Maxwell, la divergencia del campo magnético es nula, si consideramos un campo magnético unidireccional, las variaciones espaciales de la divergencia son perpendiculares al campo, por lo que la fuerza de tensión magnética se anula y la expresión anterior queda

\dfrac {\partial \vec{v}}{\partial t}+ \left( \vec{v} \cdot \vec{\nabla} \right) \vec{v} + \dfrac {1}{{\rho}_M} \vec{\nabla} \left(P+\dfrac {B^2}{2{\mu}_0} \right)=0

Si el fluido está en estado de plasma, tenemos que la Ley de Ohm se puede escribir como

\vec{E}+\vec{v} \times \vec{B}=0

debido a que en este estado la conductividad tiende a ser infinita y para mantener el flujo de corriente, la fuerza aplicada debe ser lo más baja posile. De este modo, la Ley de Faraday queda como

\dfrac {\partial \vec{B}}{\partial t}=\vec{\nabla} \times \left( \vec{\nabla} \times \vec{B} \right)

CONCLUSIONES DE LAS ECUACIONES

Como hemos podido comprobar, la magnetohidrodinámica es, en realidad, una consecuencia de aplicar campos electromagnéticos a fluidos que poseen carga eléctrica, y en esto se basaba Clancy para “propulsar” su Octubre Rojo. No obstante, los intentos de generar un propulsor naval de estas características se han quedado en prototipos construidos en los años 60 puesto que las inducciones magnéticas que requerían eran elevadas (del orden de más de 5 Tesla) en compartimientos muy voluminosos (centenares de m3). Por tanto, el submarino de la clase Typhoon cumplía con las exigencias de proporcionar el debido dramatismo a la novela, sin despreciar por ello la base científica en la que se basaba, debido al tamaño de este tipo de naves, considerados por los EE.UU. como colosos de las profundidades debido al desplazamiento de toneladas que eran capaces de propulsar.

No quiere decir que la aplicación de la magnetohidrodinámica esté actualmente aparcada. Debido a ella, los astrofísicos han logrado generar modelos basados en estas ecuaciones para determinar las trayectorias de las partículas en el Sol y predecir erupciones solares. Y los geofísicos, comprender mejor la estructura de los núcleos de los planetas.

Además, estas técnicas son utilizadas desde hace años también en metalurgia: a medida que calentamos un metal transformándolo en un fluido, incrementamos notablemente su conductividad, de modo que se puede aplicar la Ley de Ohm para los plasmas. Esto evita, en los procesos de fundición y generación de aleaciones, que el metal entre en contacto con el crisol y adquiera escoria, mejorando notablemente la calidad de la aleación. Es el principio de los altos hornos eléctricos, que vinieron a sustituir a los antiguos que usaban carbón.

También se han encontrado aplicaciones para generar energía eléctrica a partir del movimiento de un gas en presencia de un ampo magnético, así como el confinamiento del estado de plasma para los reactores de energía nuclear de fusión. Por no hablar de los experimentos realizados en el LCH, en Suiza. No obstante, se sigue teniendo el problema de la gran inducción magnética generada y el volumen necesario para mantener los plasmas.

Sin embargo, es una pequeña parte de todo lo que se podría llegar a conseguir con mejor tecnología. A medida que se desarrolle ésta, la magnetohidrodinámica proporcionará mejores aplicaciones.

References

  1. J. R. Reitz, F. J. Milford, R. W. Christy, “Foundations of the Electromagnetic Theory”; Addison-Wesley Publishing Company, Inc, Massachusetts (U.S.A.), 1979
  2. H. Alfvén, “Existence of electromagnetic-hydrodynamic waves“. Nature 150: 405-406, 1942

 

 

MATELEC 2014. ¿Qué ha supuesto el evento?

3bc2c8d39db90e514ada-a4136d9e83Bueno, como cada dos años, éste también me ha tocado acercarme a la cita de MATELEC, una feria en la que se puede testar muy bien el estado de nuestra industria eléctrica y electrónica. Y quiero con esta entrada dar mi opinión de lo visto este año, en comparación con la edición de 2012, en la que la feria había vuelto a resurgir frente al gran batacazo, en mi opinión, que supuso la edición de 2010.

UN BREVE REPASO A OTRAS EDICIONES

Una feria sectorial es algo muy complejo. Las primeras ediciones de MATELEC eran anuales, lo que implicaba mucho gasto en las empresas para poder acudir a exponer sus novedades. Además, un producto novedoso no suele salir de un año para otro. El paso de una convocatoria anual a la actual, cada dos años, fue una medida acertada, porque permitía a las empresas plantear su asistencia desde el punto de vista de las novedades y no sólo desde un marcado carácter comercial. Una feria tecnológica se debe de nutrir no sólo de oportunidades para hacer negocio, sino que debe de mostrar el músculo de las empresas, en forma de Investigación, Desarrollo e Innovación.

Durante muchos años, las telecomunicaciones ocuparon el eje central de la feria, en lo tocante a la industria electrónica. La feria se planteaba así como una feria sectorial en la que todos los sectores (industria eléctrica, iluminación, electrónica, manufactura, etc) acudían a mostrar sus novedades, pero sin mostrar nexos de unión entre los distintos sectores. Por tanto, en aquellos años MATELEC era una feria sectorial que, internamente, también estaba fuertemente sectorizada, como si no hubiese interdependencia entre sectores.

Al ser el eje de la industria electrónica las telecomunicaciones, la desaparición en la edición de 2010 de los grandes fabricantes españoles del sector deslució enormemente la feria, reduciendola a los distribuidores, sin duda más necesitados de oportunidades de negocio, pero con incapacidad de mostrar más novedades que las que los fabricantes les presentasen. Sin la presión de exponer, los grandes fabricantes no necesitaban ya mostrar su potencial innovador y eso repercutía en los pequeños distribuidores. Personalmente, la edición de 2010 represento, a mi modo de ver, uno de los más sonoros fracasos de la historia de la feria. ¿Estaba sentenciada de muerte?

10689570_566581643487470_4057597374882271081_nLA EDICIÓN DE 2012, UNA PUERTA PARA LA ESPERANZA

Es importante que recuerde porqué concedo tanta importancia a lo que se puede considerar un evento puramente sectorial: es un momento en el que se puede testar la situación real de una determinada industria. En este caso, esta feria es el termómetro de nuestra industria eléctrica y electrónica, y como otras ferias, representa el escaparate de cómo está evolucionando en unos momentos difíciles, debido a la gran caída de consumo interno que supuso la crisis y de la enorme cantidad de empresas industriales que se han visto abocadas al cierre y desaparición. MATELEC 2010 mostró un mazazo considerable de la industria eléctrica y electrónica, con pocos stands, muchos huecos libres y la mitad de los pabellones sin llenar. El escenario era, cuanto menos, atroz.

Así que el equipo directivo de la feria, conscientes de que si no se remediaba esto en la siguiente edición, significaría la desaparición de la feria, abordaron una estrategia que considero fue muy acertada: hay que abrir la feria a sectores nuevos, incidir en nuevas tecnologías, y convertir la feria en una feria única sectorialmente, sin las divisiones que antes presentaban los diversos subsectores. Hay que aunar industria eléctrica y electrónica, que la feria presente una única voz, y todo ello lo consiguieron con el lema de la eficiencia energética. Eso hizo que la edición de 2012 fuese, también bajo mi opinión, un acierto y un éxito rotundo, que abrió las puertas a la feria a una nueva etapa de esplendor como la que vivió en las dos décadas pasadas. Aún así, quedaba el test de la consolidación, ver si esa tendencia abierta funcionaba en nuevas ediciones. Y ahora estamos en la edición de 2014, idónea para ese test.

EL MISMO LEMA, UNA GRAN NECESIDAD DE CONSOLIDACIÓN

10710697_566642286814739_7258534809365919608_nMATELEC 2014 se ha presentando con el mismo lema que hace dos años, y la misma estructura organizativa y de presentación sectorial que le supuso un acierto en 2012. Partiendo de esas premisas, parece que la feria debería haber tenido, si no un éxito claro como 2012, un peso específico importante en el sector. ¿Ha sido así?

Buena pregunta. En primer lugar, algo realmente interesante del evento, y que a mi modo de ver es el objetivo que debe tener toda feria sectorial, es ver las novedades que se producen en la industria y, además, comprobar si se están creando nuevas industrias, si la industria electrica y electrónica de nuestro país sigue viva.

Hablábamos antes de lo que pasó en MATELEC 2010, cuando los grandes fabricantes dejaron de acudir la feria, dejando solos a los distribuidores como expositores. Sin embargo, tanto en 2012 como en 2014 hemos asistido al surgimiento de nuevas industrias en el sector, unidas bajo lema de la eficiencia energética. Bajo esta premisa, la edición de 2014 no ha sido un éxito colosal pero sí ha cumplido con su objetivo principal, que es mostrar una industria viva, en un momento en el que el sector está pasando por sus horas más bajas. Han aparecido nuevos fabricantes, que han ido sustituyendo a los que dominaron la década pasada, por lo que podemos darle una buena nota en este sentido.

Los foros han funcionado correctamente, compartiendo el espacio con los expositores, y la innovación también se ha centrado en la feria. Muchas de las nuevas empresas han confiado en la innovación como motor de su crecimiento, y hay que reconocer que en este apartado también la nota puede ponerse alta.

Pero aunque esta edición nos muestra que todavía hay en España una industria viva e innovadora, que quiere sustituir a aquella industria que dominó durante la década pasada, esta edición también nos muestra que el crecimiento de esta nueva industria es sensiblemente inferior al de aquella: o sea, que nacen nuevos fabricantes, pero no lo hacen al ritmo de los que se desaparecen, y muchos de estos nuevos fabricantes son resultado de negocios iniciados por emprendedores, por lo que muchos de ellos se habrán quedado en el camino.

Una muestra clara de esa situación es la gran presencia del gigante asiático en la feria: tanto en el área de eficiencia energética como en el de iluminación, la industria china muestra una fuerte presencia, lo que indica claramente el dinamismo de este país en el tema de la industria eléctrica y electrónica y su capacidad de generación y consolidación de nuevas empresas frente a la nuestra. Empresas, que en nuestro país se podrían considerar microempresas o pequeñas empresas se han lanzado a la internacionalización, apostando fuerte por la difícil y tortuosa vía de la exportación.

¿QUÉ PODEMOS ESPERAR CARA AL FUTURO?

Como ya he mencionado, que MATELEC haya orientado su vista al campo de la eficiencia energética, en un mundo que tiene los recursos cada vez más comprometidos, ha sido un acierto en toda regla, si bien hace falta comprobar si este giro va consolidándose en la siguiente edición. Que la industria eléctrica y electrónica consolide estas nuevas oportunidades de negocio y que sustituya de forma eficaz al modelo anterior es condición necesaria para que el corazón industrial tecnológico vuelva a latir como en épocas pasadas. Por tanto, considero que la edición de 2016 será determinante para comprobar si este sector vuelve vitaminado a los mercados o no. Por eso, a mi modo de ver, esta edición se puede considerar sólo como una edición de transición en la consolidación del nuevo modelo productivo.

El PLL digital (y II)

Hablábamos en la entrada anterior del ADPLL de primer orden. En esta entrada vamos a analizar el ADPLL de segundo orden, su función de transferencia y su respuesta.

DIAGRAMA DE BLOQUES GENERALIZADO DE UN ADPLL

En la entrada anterior pudimos ver cómo era el diagrama de bloques de un ADPLL. Como en el caso analógico, tenemos un comparador de fase, un filtro de lazo y un VCO, con sus funciones de transferencia en Transformada Z.

Diagrama de bloques del PLL digital

Diagrama de bloques del PLL digital

El filtro de lazo generalizado tiene un diagrama de bloques que es

Diagrama de bloques de un filtro de lazo digital

Diagrama de bloques de un filtro de lazo digital

Por lo que la función de transferencia del ADPLL generalizado es

\hat \Theta (z)=\dfrac {\alpha (z-1)+\beta}{(z-1)^2 +\alpha(z-1)+\beta}\Theta(z)

Y como el término del denominador de la función de transferencia es (z-1) al cuadrado, tenemos un sistema de segundo orden.

Vamos a estudiar la respuesta de este sistema a una señal del tipo escalón, de la forma

\theta [n]=\dfrac {\pi}{4}u[n]

RESPUESTA DE UN ESCALÓN A UN ADPLL DE SEGUNDO ORDEN

En el ADPLL de segundo orden tenemos que la respuesta a un escalón es:

\hat \Theta (z)=\dfrac {\pi}{4} \dfrac{z}{z-1} \dfrac {\alpha z-(\alpha-\beta)}{z^2 -(2-\alpha)z+(1-\alpha+\beta)}\Theta(z)

Para obtener la estimación de fase, deberemos resolver la inversa de la Transformada Z de esta expresión. Para ello, lo que hacemos es dividir la transformada en suma de transformadas, obteniendo

\hat \Theta (z)=\dfrac {\pi}{4}z \left[\dfrac{1}{z-1} - \dfrac {z-1}{z^2 -(2-\alpha)z+(1-\alpha+\beta)}\right]

Y ahora debemos poner el segundo término como suma de dos términos en z

\dfrac {z-1}{z^2 -(2-\alpha)z+(1-\alpha+\beta)}=\dfrac {A}{z-p_1}+\dfrac {B}{z-p_2}

con

p_{1,2}= \dfrac { (2-\alpha) \pm \sqrt {\alpha^2-4 \beta}}{2}

Y resolviendo estos términos, obtenemos que

\hat \Theta (z)=\dfrac {\pi}{4} \left[ \dfrac {z}{z-1} - \left( \dfrac {1}{2}- \dfrac {\alpha}{2 \sqrt {\alpha^2-4 \beta}} \right) \dfrac {z}{z-p_1} - \left( \dfrac {1}{2}+ \dfrac {\alpha}{2 \sqrt {\alpha^2-4 \beta}} \right) \dfrac {z}{z-p_2}  \right]

\hat \theta [n]=\dfrac {\pi}{4} \left[ 1 - \left( \dfrac {1}{2}- \dfrac {\alpha}{2 \sqrt {\alpha^2-4 \beta}} \right) \left (\dfrac { (2-\alpha) + \sqrt {\alpha^2-4 \beta}}{2} \right)^n - \left( \dfrac {1}{2}+ \dfrac {\alpha}{2 \sqrt {\alpha^2-4 \beta}} \right) \left (\dfrac { (2-\alpha) - \sqrt {\alpha^2-4 \beta}}{2} \right)^n \right]u[n]

Y aquí obtenemos varios resultados a estudiar. Vamos a suponer, primero, que β=0. Sustituyendo en la expresión anterior, obtenemos que la estimación de fase es

\hat \theta[n]=\dfrac {\pi}{4} \left[ u[n] - (1-\alpha)^n u[n] \right]=\dfrac {\pi}{4} u[n]\left[ 1 - (1-\alpha)^n \right]

que es la estimación de fase obtenida en la entrada anterior.

Vamos a estudiar el caso de que α=0. Los polos p1 y p2 quedan ahora como siguen:

p_1= \dfrac { 2 + \sqrt {-4 \beta}}{2}=1+j\sqrt {\beta}=\sqrt {1+\beta ^2} e^{j\tan^-1 ({\beta})}

p_2= \dfrac { 2 - \sqrt {-4 \beta}}{2}=1-j\sqrt {\beta}=\sqrt {1+\beta ^2} e^{-j\tan^-1 ({\beta})}

y la estimación de fase queda

\hat \theta[n]=\dfrac {\pi}{4} u[n]\left[ 1 - \sqrt[n] {1+\beta ^2}\cos (n\tan^-1 ({\beta})) \right]

y podemos ver que se trata de una función que tiende a ser inestable, ya que el término en cuadrado de β tiende a crecer a medida que crece n, ya que el coseno es una función acotada. Por tanto, siempre tiene que haber un término α para que el ADPLL enganche.

De la expresión obtenida para la estimación de fase general, y del estudio de las condiciones particulares, hemos obtenido que α≠0. La siguiente condición que se tiene que dar para que el lazo enganche es que

\alpha^2 - 4 \beta < 0

De este modo obtenemos como resultado que

\hat \theta[n]=\dfrac {\pi}{4} u[n]\left[ 1 - \sqrt[n] {1-\alpha+\beta ^2}\left(\cos \left( n\tan^-1 \dfrac{\sqrt{4 \beta-\alpha^2}}{2-\alpha}\right)-\dfrac {\alpha}{\sqrt {4\beta-\alpha^2}}\sin \left( n\tan^-1 \dfrac{\sqrt{4 \beta-\alpha^2}}{2-\alpha}\right)\right) \right]

y si representamos esta función en el dominio de n, podremos comprobar que se trata de una función cosenoidal amortiguada.

Estimación de fase en el dominio del tiempo

Estimación de fase en el dominio del tiempo

COMPARATIVA CON EL PLL ANALÓGICO DE SEGUNDO ORDEN

Si comparamos la función de transferencia del ADPLL de segundo orden con la del PLL analógico, podremos sacar la interrelación entre la pulsación natural del lazo ωn, el coeficiente de amortiguamiento ξ y α, β, que son

\hat \Theta (s)=\dfrac {\alpha K_Vs+ \beta K_V^2}{s^2 +\alpha K_V s +\beta K_v^2} \Theta(s)

que comparamos con

H(s)=\dfrac {2{\xi}{\omega}_n s +{{\omega}_n}^2}{s^2+2{\xi}{\omega}_n s +{{\omega}_n}^2}

e igualando términos obtenemos que

\omega_n=K_v \sqrt {\beta}

\xi=\dfrac {\sqrt {\beta}}{2 \alpha}

donde obtenemos una relación directa entre los diferentes términos del ADPLL y el PLL analógico.

CONCLUSIÓN

En esta entrada hemos ampliado el estudio del ADPLL al segundo orden y hemos podido comprobar las condiciones que se deben dar para que se produzca enganche, así como la interrelación entre el ADPLL digital y su equivalente en analógico

Con esta entrada finalizamos el estudio del lazo de enganche de fase en ambas tecnologías, analógica y digital. El lazo de enganche de fase es uno de los sistemas de realimentación más utilizados en Telecomunicaciones, tanto para generar señales muy estables como para demodular señales o comparar fases, y conocer su metodología ayuda enormemente al diseño de este tipo de dispositivos.

Referencias

  1. C. Joubert, J. F. Bercher, G. Baudoin, T. Divel, S. Ramet, P. Level; “Time Behavioral Model for Phase-Domain ADPLL based frequency synthesizer”; Radio and Wireless Symposium, 2006 IEEE, January 2006
  2. S. Mendel, C. Vogel;”A z-domain model and analysis of phase-domain all-digital phase-locked loops”; Proceedings of the IEEE Norchip Conference 2007, November 2007
  3. R. B. Staszewski, P. T. Balsara; “Phase-Domain All-Digital Phase-Locked Loop”; IEEE Transactions on Circuits and Systems II: Express Briefs; vol. 52, no. 3, March 2005

 

 

 

 

EL PLL Digital (I)

En las entradas anteriores se analizaron las PLL analógicas y su comportamiento. En los sistemas digitales, del mismo modo que en los analógicos, podemos tener también lazos de enganche de fase digitales, en los que comparamos una fase, muestreada de forma discreta, y  le aplicamos una realimentación usando un comparador de fase digital y un VCO digital. En forma de diagrama de bloques, la forma más representativa de un PLL digital o ADPLL (All Digital Phase Locked Loop) es el que aparece en la figura, donde tenemos un VCO digital que genera una fase, que es comparada con la fase de entrada a través del comparador de fase (comparador en diferencia). Un filtro de lazo H(z) completa la realimentación, del mismo modo que ocurría en los PLL analógicos.

Un PLL analógico tiene combinaciones de circuitos analógicos y digitales. Sin embargo un ADPLL es un sistema donde todos los mecanismos que intervienen en la generación de la fase son digitales. Por eso el nombre de ADPLL.

La herramienta matemática para analizar un ADPLL, así como en analógico era la transformada de Laplace, es la transformada z, un mecanismo matemático que desplaza las señales discretas del espacio temporal no lineal a otro dominio donde las relaciones son lineales. Además, hay una relación directa entre la trasformada de Laplace y la transformada z, ya que la variable z es

z=e^{sT}

siendo s la variable independiente de Laplace y T el periodo de muestreo utilizado.

En realidad, el comparador de fase digital es bastante más complejo que lo que muestra nuestro diagrama de bloques. Sin embargo, para estimaciones de fase muy pequeñas podemos poner el comparador de fase como la diferencia entre la fase de entrada y la estimación de fase. En otra entrada analizaremos el comparador de fase digital con más profundidad.

Funcionamiento de un ADPLL

A la vista del diagrama, podemos ver que hay tres bloques principales:

  • Comparador de fase: es un dispositivo que da como resultado la diferencia entre la fase de entrada y la estimación de fase generada por un VCO. En realidad, el comparador de fase es algo más complejo, pero para valores pequeños de la diferencia de fase de entrada y la fase generada por el VCO podemos aproximar el error de fase a dicha diferencia.
  • Filtro de lazo: es un filtro digital que puede tener componentes de primer o segundo orden, transformando el lazo en un ADPLL de primer o orden, en función de su función de transferencia H(z). La función de transferencia estándar en el dominio de z de un filtro de lazo digital es
Diagrama de bloques de un filtro de lazo digital

Diagrama de bloques de un filtro de lazo digital

H(z)={\alpha}+\dfrac {{\beta} z^{-1}}{1-z^{-1}}

  • VCO digital: es un dispositivo digital que genera una fase en función de un nivel de entrada, siendo ambos discretos en el tiempo. En el dominio de Laplace, corresponde con un integrador, y su función de transferencia en el dominio de z es

VCO(z)=\dfrac {K_v T z^{-1}}{1-z^{-1}}

donde Kv es la ganancia del VCO (similar al analógico) y T es el periodo de muestreo utilizado.

Por tanto, volviendo a recuperar nuestro diagrama de bloques

Diagrama de bloques del PLL digital

Diagrama de bloques del PLL digital

podremos calcular la función de transferencia que relaciona la estimación de fase y la fase de entrada.

\hat {\theta}(z)=\dfrac {{\alpha}  (z-1)+{\beta}}{(z-1)^2 + {\alpha}  (z - 1) + {\beta}}  {\theta}(z)

Podemos comparar esta función de transferencia con la función de transferencia de un PLL analógico, que es

H(s)=\dfrac {2{\xi}{\omega}_n s +{{\omega}_n}^2}{s^2+2{\xi}{\omega}_n  s +{{\omega}_n}^2}

y veremos que se trata de un ADPLL de segundo orden.

ADPLL de primer orden

En esta primera entrada dedicada al ADPLL vamos a analizar el sistema de primer orden. Podemos ver, a partir de la función de transferencia obtenida, que si β=0, ésta se reduce a la expresión

\hat {\theta}(z)=\dfrac {\alpha}{(z-1) + {\alpha}} \ {\theta}(z)

y tendremos un ADPLL de primer orden. Vamos a ver ahora lo que ocurre cuando la fase de entrada cambia bruscamente, cuando introducimos una señal escalón

{\theta}[n] = \dfrac {\pi}{4}  u[n]

donde u[n] es una función de pulsos unidad discretos, en el dominio temporal n (muestras de fase). La forma de la función es

Forma de onda de la señal escalón

Forma de onda de la señal escalón

y su transformada z es

{\theta}(z)=\dfrac {\pi}{4} \dfrac {1}{1-z^{-1}}

Al sustituir esta expresión en la función de transferencia, obtenemos que la estimación de fase es

\hat {\theta}(z)=\dfrac {\pi}{4}  \dfrac {\alpha}{z-(1- {\alpha})}  \dfrac {1}{z-1}

Para resolver la transformada inversa de la estimación de fase, factorizaremos esta expresión, obteniendo el siguiente resultado

\hat {\theta}(z)=\dfrac {\pi}{4} \left[ \dfrac {z}{z-1}-\dfrac {z}{z-(1-{\alpha})} \right]=\dfrac {\pi}{4} \left[ \dfrac {1}{1-z^{-1}}-\dfrac {1}{1-(1-{\alpha})  z^{-1}} \right]

Y sabiendo que

Z(a^n  u[n])=\dfrac {1}{1-a  z^{-1}}

obtenemos como resultado la expresión

\hat {\theta}(n)=\dfrac {\pi}{4}  \left[1-(1-{\alpha})^n \right]  u[n]

y esta es una señal que, cuando n=0, vale 0, creciendo lentamente a medida que n sube, siempre que la diferencia 1–α<1. Si esa diferencia es mayor que la unidad, el ADPLL nunca engancharía. Esta es la condición para que el ADPLL tenga enganche.

Por tanto, si elegimos un α=0,5, obtendremos que la estimación de fase es una curva de la forma

Curva de la estimación de fase en el dominio del tiempo discreto

Curva de la estimación de fase en el dominio del tiempo discreto

Por tanto, cuando n→∞, si el ADPLL está diseñado correctamente, la estimación de fase debería seguir a la fase de entrada (condición de enganche).

La respuesta es similar a la del PLL analógico de primer orden, en el que la función de transferencia sería de la forma

\hat {\theta}(s)=\dfrac {{\omega}_n}{s+{\omega}_n}  {\theta}(s)

Para pasar del dominio de z al dominio de Laplace, hay que tener en cuenta la expresión del inicio y si elegimos un periodo de muestreo T tal que s·T<<1, podemos desarrollar esa expresión en un polinomio de la forma

z=e^{s  T}=1+s  T + O \left( (s  T)^2 \right)

y despreciando los términos superiores a 2, obtendremos que

z-1=s  T

y si sustituimos en la función de transferencia en z, podemos ver que

\hat {\theta}(s)=\dfrac {\alpha}{s  T+{\alpha}} {\theta}(s)=\dfrac {\dfrac {\alpha}{T}}{s+\dfrac{\alpha}{T}}  {\theta}(s)

Y como α es adimensional, el término α/T tiene unidades de pulsación. Esa pulsación determinará el tiempo de enganche del ADPLL, para obtener a la salida una estimación de fase que siga a la de la entrada.

Conclusión

En esta entrada hemos analizado el lazo de seguimiento de fase digital, y nos hemos centrado en analizar el caso del lazo de primer orden de un ADPLL lineal . Hemos observado las analogías existentes entre un PLL analógico y un ADPLL y cómo se pueden interrelacionar, así como la respuesta a una señal escalón del un ADPLL de primer orden.

En la siguiente entrada analizaremos el ADPLL de segundo orden y sus múltiples respuestas en función de los parámetros elegidos para realizar el filtro de lazo.

Referencias

  1. C. Joubert, J. F. Bercher, G. Baudoin, T. Divel, S. Ramet, P. Level; “Time Behavioral Model for Phase-Domain ADPLL based frequency synthesizer”; Radio and Wireless Symposium, 2006 IEEE, January 2006
  2. S. Mendel, C. Vogel;”A z-domain model and analysis of phase-domain all-digital phase-locked loops”; Proceedings of the IEEE Norchip Conference 2007, November 2007
  3. R. B. Staszewski, P. T. Balsara; “Phase-Domain All-Digital Phase-Locked Loop”; IEEE Transactions on Circuits and Systems II: Express Briefs; vol. 52, no. 3, March 2005

¿Qué son las Nuevas Tecnologías? El engaño del “mundo cambiante”

Se oye mucho en estos últimos años la frase “el mundo cambia y debes de adaptarte a esos cambios”. Pero, ¿es verdad que el mundo cambia continuamente? Me imagino que lo mismo deberían pensar aquellos legionarios romanos que, viendo las heridas que provocaba el “gladius hispanicus” decidieron adoptarlo como panoplia frente a la espada larga y pesada que llevaban los galos.

Y es que el mundo, en realidad, no es tan cambiante. Al menos, no como se nos quiere hacer creer. El mundo no cambia tanto, es muy estable y aplicaciones que hoy día estamos utilizando fueron descubiertas antes. Lo que se ha avanzado es la forma de aplicarlas y venderlas.
EL PROGRESO TRAJO EL DESCANSO

Hace ya varios años, en Espinosa de Bricia, pueblo de agricultores del que es originaria mi familia, colgaron un brabán y le pusieron esa frase: “El progreso trajo el descanso”. Ese es el objetivo del progreso, que podamos descansar. Pero seguimos haciendo a la hora de sacar los frutos de la tierra lo mismo que hacíamos desde que bajamos del árbol. ¿Es el mundo tan cambiante? La tierra se tiene que seguir arando como antaño, y lo que hemos desarrollado son herramientas para facilitar el trabajo. Pero esas herramientas siguen siendo herramientas. Llamémoslo tecnología, pero no mundo cambiante.

En los últimos años ha habido una tendencia a considerar que el mundo cambia y que no nos adaptamos. ¡Si somos la especie más adaptativa de La Tierra! Nos adaptamos a todo: vivimos en climas boreales y en desérticos, vivimos con 5 horas de luz o con 9 horas, vivimos en lo más recóndito y entramos en donde queramos. ¿Cuál es la razón por la que se publicita que no somos capaces de adaptarnos a los cambios? Somos la especie que mejor se adapta a ello…

Lo que se ha perdido es el horizonte de los cambios: los cambios tienen que servir para prosperar, para mejorar. Sin embargo, hoy en día los cambios y las mejoras tecnológicas, si hacemos un balance, sólo nos aportan un 20% de lo que nos cuestan. ¿Por qué? Porque nos hemos olvidado que el brabán mejoró al antiguo arado romano sólo para que los que extraían sus beneficios de la tierra pudiesen tener más tiempo libre.

LA TECNOLOGÍA COMO MOTOR DE DESARROLLO DEL SER HUMANO

La tecnología debe ser un motor de desarrollo del ser humano, en su afán de buscar la felicidad. Sin embargo, se ha convertido en un afán de obtener dinero rápido. Y eso ha llevado a la obsolescencia programada, de la que ya hemos hablado en otro comentario.

Hace poco le preguntaba a mi sobrina: “¿Por qué quieres un teléfono smartphone?”, siendo la respuesta “Porque lo tienen mis amigos”. Bajo esa premisa incontestable (si lo tienen mis amigos, ¿no lo puedo tener yo?) uno proporciona un equipo que está en exceso sobrado para las necesidades reales de la persona que lo recibe. El brabán era necesario para tener tiempo libre, pero ¿es necesario tener una cosechadora si sólo tienes una huerta?

La tecnología desarrolla al ser humano, pero hay que acotar las necesidades reales para que éstas nunca superen a nuestros deseos. Los deseos son otra cosa.