Archivo de la etiqueta: Investigación

La importancia de una divulgación seria y contrastada

Ni que decir tiene que la divulgación científica o tecnológica debe de ocupar un lugar importante en nuestra sociedad. Y es tarea de los medios de comunicación ofrecer una información lo más asequible posible a aquellas personas cuya formación técnica no les permite comprender totalmente los hechos descubiertos. Esto, desgraciadamente, no ocurre, buscando un titular sensacionalista y desechando cualquier mínimo rigor en la noticia. En esta entrada vamos a analizar un reciente “paper” publicado en la revista NATURE, cómo lo han tratado los diferentes medios y cómo en realidad tendría que haber sido un análisis riguroso del artículo publicado.

Por mi profesión, tengo que ser consumidor compulsivo de “papers”. Está en mi ADN profesional. Y por ese hecho tengo que estar alerta a las últimas novedades que se puedan dar en el “estado del arte”. Es algo complicado teniendo en cuenta que diariamente se publican cientos de artículos, unos en revistas de impacto y otros en páginas y blogs con menos importancia, además de aquellos que se pueden publicar en revistas y boletines de asociaciones científicas mundiales. El mundo del “paper” científico no es un mundo, precisamente, pequeño.

A veces llegas a un artículo de impacto gracias a los medios de comunicación, gracias a sus secciones técnicas y científicas. Sin embargo, últimamente estas secciones están dejando mucho que desear en cuanto a la presentación del artículo, a su relevancia y a lo más importante, qué representa realmente.

Como mi especialidad es el Electromagnetismo, recientemente he encontrado una serie de noticias con las que, en realidad, no sé qué quedarme. El “paper” en cuestión [1] está escrito por un equipo del MIT (Instituto de Tecnología de Massachusetts, considerado como uno de los centros tecnológicos más prestigiosos del mundo), dirigido por el Prof. Tomás Palacios y en el que han intervenido un nutrido grupo de ingenieros y tecnólogos mundiales.

Este artículo muestra el diseño de una rectena que se puede usar para captar la energía electromagnética presente en la banda de WiFi (2.45 GHz, 5.8 GHz), mediante una antena flexible y un semiconductor de muy bajo perfil. Ante todo, lo que representa el artículo es la posibilidad de hacer antenas flexibles con espesores muy finos, con buena eficiencia, frente a las actuales rectenas usando semiconductores convencionales. En el artículo, los ingenieros han usado un semiconductor basado en el disulfuro de molibdeno (MoS2), un material muy usado en aplicaciones como lubricantes y refinación petrolífera. El hecho de que tenga una banda prohibida entre la banda de conducción y la de valencia hace que este material pueda ser usado en la construcción de dispositivos semiconductores como los diodos.

Sin embargo, el disulfuro de molibdeno tiene una movilidad electrónica baja frente a los semiconductores convencionales de silicio o arseniuro de galio, lo que limita la banda de frecuencias en el que se puede usar. Lo que los autores del “paper” han logrado es llegar a una frecuencia de corte usando este semiconductor como diodo rectificador de 10 GHz. Lo cual es un logro evidente. La cuestión es ¿cómo se trata en los medios este avance?

TITULARES SENSACIONALISTAS EN BUSCA DE CLICS

Pongo sólo dos artículos encontrados en los medios, como referencia, aunque por supuesto tenemos muchos más y casi todos han caído en el mismo sensacionalismo. El artículo de El Mundo [2] titula “Un científico español crea una antena capaz de convertir en electricidad la señal WiFi”. Si bien es cierto que el Prof. Palacios, además de ser español, es el director del equipo multinacional de ingenieros del MIT que han conseguido el logro del que hablaba antes, hay que indicar al redactor de la noticia que todas las antenas, desde que se utilizan, convierten la señal WiFi (o la de radio, o la de TV, es lo mismo) en señal eléctrica PORQUE SON SEÑALES ELÉCTRICAS. No son ectoplasmas, ni algo esotérico que viaja por el aire. Se generan mediante equipos eléctricos y por tanto, son susceptibles de ser captadas por otros equipos eléctricos. Si no, no habría comunicaciones inalámbricas como las que llevamos emitiendo desde que Hertz hiciera su primera transmisión radiada en 1887 (ya ha llovido desde entonces). El titular, que también reproduce Vozpopuli [2] con la misma intención (y casi todos han reproducido lo mismo), demuestra que no se ha hecho una verdadera revisión de estilo y menos se ha consultado éste con expertos en el tema.

El artículo de El Mundo parece que pretende ser una entrevista con el Prof. Palacios. Pasa lo mismo con el de Vozpopuli, aunque dudo mucho que ningún medio español haya acudido al MIT a entrevistar al director de este equipo de tecnólogos. Más bien creo que están usando alguna entrevista realizada al ingeniero y de esa forma desarrollan la noticia. Aunque la proximidad de la publicación del “paper” en Nature (todo se publica el mismo día 28 de enero) me muestra que habrán buscado una publicación americana y habrán traducido con el Google Translate. No sería la primera vez.

En el artículo de El Mundo hay una frase que todavía rechina en mis oídos: “Los ingenieros han conseguido desarrollar una antena que captura las ondas electromagnéticas, incluidas las que se transmiten en una conexión inalámbrica, en forma de corriente alterna”. Habría que decirle al autor que todas las antenas son capaces de capturar las ondas electromagnéticas, INCLUIDAS LAS QUE SE TRANSMITEN EN UNA CONEXIÓN INALÁMBRICA PORQUE SON ONDAS ELECTROMAGNÉTICAS. De hecho, su router inalámbrico tiene antenas, ya sean externas (ésas se ven) o internas (para verlas hay que desmontar el equipo). Pero toda onda electromagnética radiada se capta con antenas, no sólo la WiFi, sino la radio convencional, la TV y las señales de satélite.

Vozpopuli tampoco trata con rigor el “paper”. Iniciando con un “Imagine un mundo en el que los teléfonos móviles, los ordenadores portátiles y el resto de dispositivos se cargaran sin baterías y de manera remota”, cometen un despropósito del tamaño de un camión: si los móviles no tienen baterías… ¿qué vas a cargar? Lo que se cargan son las baterías, la electrónica de un móvil necesita una alimentación de DC para poder funcionar y eso se lo proporciona la batería. Y ya hay cargadores inalámbricos para móviles, usados precisamente para cargar la batería. Lo que pasa es que esos cargadores se basan en acoplamientos inductivos en campo cercano y no en la energía radiada en el espacio libre. Lo coherente hubiese sido decir Imagine un mundo en el que su móvil no tenga batería y se alimente a través de la emisión de radio presente en el espacio. Muy futurista e hiperoptimista (mucho tienen que bajar los consumos de los móviles para poder alimentar con energías tan bajas los dispositivos electrónicos que contienen), pero por lo menos se ajustaría más a lo que es el “paper” publicado.

Otro de los despropósitos de Vozpopuli se da cuando dicen que los dispositivos capaces de convertir ondas electromagnéticas de corriente alterna en electricidad se conocen como “rectennas” y hasta ahora eran rígidas y basadas en materiales demasiado caros para producirlos a gran escala. Que son rígidas, es cierto, pero que están basadas en materiales demasiado caros para producirlos a gran escala es una patraña. La mayor parte de las rectenas que aparecen en los cientos de “papers” publicados mundialmente suelen ser semiconductores de uso general, y bastante más baratos que el tratamiento industrial del disulfuro de molibdeno como semiconductor. De hecho, no hay semiconductores electrónicos en el mercado industrial hechos con disulfuro de molibdeno, por lo que, por ahora, la tecnología desarrollada en el MIT, hasta que no se logre un escalado industrial, es como los coches de Elon Musk: caros, con poca autonomía y con plazos de entrega al cliente de eones.

Pero El Mundo no le anda a la zaga cuando dice que en concreto la antena ha llegado a producir unos 40 microvatios de potencia, expuesta a niveles de potencia típicos de las señales WiFi -en torno a 150 microvatios-, una cantidad que según los autores es más que suficiente para iluminar una pantalla de móvil o activar chips de silicio. Aunque de momento son prudentes, sus creadores esperan que la nueva tecnología se pueda materializar en los próximos años. Sí, 40 μW pueden mantener en modo SLEEP un microprocesador sin consumir la batería del dispositivo móvil, permitiendo que se active cuando se necesita usar (entonces tirará de la corriente de la batería), pero para nada será suficiente cuando se quiera activar el amplificador que tiene que emitir la señal GSM, con un pico de emisión de 4 W. Ahí, los 40 μW son como tratar de subir 1000 veces seguidas el Everest. En este caso, lo más lógico es indicar que se obtiene una eficiencia bastante alta con señales muy bajas, ya que si la señal generada en la antena por el campo radiado por un router WiFi es 150 μW (-8,2 dBm) , la eficiencia es del 27% y eso se logra en las rectenas actuales de silicio y arseniuro de galio.

En fin, el tratamiento dado a la noticia es un cúmulo de incorrecciones que se podrían haber solventado publicando la noticia al día siguiente o incluso con dos días, pero bien publicada y con un lenguaje cercano al profano, pero asesorado por un técnico. Mi lenguaje es demasiado técnico y es labor del periodista traducirlo a un lenguaje entendible por su público, no acostumbrado a temas técnicos.

COMO SE DEBERÍA HABER TRATADO LA NOTICIA

Para tratar la noticia en la justa medida, primero hay que leerse el “paper”, para comprender lo que en realidad se ha logrado. En realidad, el “paper” no presenta sueños etéreos de un futuro en el que las paredes de casa van a ser enormes antenas. Con su lenguaje técnico, muestra una serie de experimentos realizados sobre una rectena hecha en perfiles flexibles, y esto es un logro porque los materiales que se habían usado hasta el momento para hacer rectenas flexibles no llegaban a la frecuencia de corte a la que han llegado los tecnólogos del MIT. Con este logro, se puede captar la señal eléctrica que hay en el ambiente y lograr optimizar el consumo de baterías, de modo que el móvil no quite carga a la batería mientras está en modo SLEEP, y estas rectenas pueden ser integradas en dispositivos móviles en las próximas generaciones.

Obviamente hay que procesar debidamente el MoS2 para conseguir el escalado industrial necesario, ya que antenas en formato flexible se fabrican en la actualidad y hay para todos los gustos: de banda estrecha, de banda ancha, multibanda, etc. Pero aunque en los artículos hablen de que con esta tecnología ya no necesitaremos extraer litio para las baterías, hay que recordar también que el disulfuro de molibdeno es un mineral y hay que extraerlo de la tierra, que no crece en los árboles.

Por supuesto que felicito al Prof. Palacios y a su equipo por el logro conseguido, recordando también que la ciencia no tiene nacionalidad y que no es una competición. Tampoco es bueno tratar estas noticias como si hubiese ganado Nadal un Grand Slam o Alonso las 24 horas de Le Mans. El equipo es multinacional como todo lo que se hace en el mundo investigador: recurres a los mejores, sin importar la nacionalidad, porque sus resultados contribuyen al cuerpo del conocimiento y al estado del arte.

REFERENCIAS

    1. Zhang, Xu et al.,”Two-dimensional MoS2-enabled flexible rectenna for Wi-Fi-band wireless energy harvesting“, Nature, Ene. 28, 2019, DOI: 10.1038/s41586-019-0892-1
    2. Herrero, Amado, “Un científico español crea una antena capaz de convertir en electricidad la señal WiFi“, El Mundo, Ene. 28, 2019
    3. Un ingeniero español crea la primera antena que convierte el WiFi en electricidad“, Vozpopuli, Ene. 28, 2019

Influencia de los campos electromagnéticos en la dinámica de los fluidos

la_caza_del_submarino_rusoAunque parezca lo contrario, en esta entrada no vamos a hablar de novelas de espías, pero sí vamos a usar un argumento de la trama de una conocida novela de espionaje para presentar la teoría magnetohidrodinámica. Ésta es una disciplina de la física, que forma parte de la teoría de campos y analiza el movimiento de fluidos con carga eléctrica en presencia de un campo electromagnético y sus posibles aplicaciones. Comprendiendo los principios de la dinámica de fluidos, llegaremos a las ecuaciones que constituyen la base de la teoría, sus conclusiones y su actual utilización.

Los que conozcan la trama de la novela de Tom Clancy “The hunt of Red October”, sabrán que trata sobre la deserción de un submarino soviético de la clase Typhoon, dotado de un sistema de propulsión silencioso y difícilmente detectable por el sonar. En la novela, se le describe como “propulsión magnetohidrodinámica” y consiste en generar flujo de corriente hidráulica a lo largo de la nave usando campos magnéticos. Este flujo permite su desplazamiento sin usar los motores convencionales, aprovechando las características conductivas del agua salada. Este sistema de propulsión silenciosa convertía a la nave en algo letal y peligroso de verdad, puesto que podría acercarse a la costa de los EE.UU. sin ser detectado y lanzar un ataque con cabezas nucleares sin que nadie lo pudiese evitar. Esta es la trama, pero, ¿cuánto hay de cierto en la misma? ¿Existe un método de propulsión o un sistema que provoque el movimiento de un fluido por la presencia de un campo electromagnético? ¿Y a la inversa? ¿Podemos generar un campo electromagnético sólo usando el movimiento de un fluido cargado?

Aunque pueda parecer que, al tratarse de una novela de espías y acostumbrados como estamos a la tendencia de la ficción a crear ciertas bases argumentales, a veces ilusorias, para dotar de cierto dramatismo a la trama, lo cierto es que la teoría magnetohidrodinámica es muy real. Tanto, que el primer efecto destacable de la misma lo podemos comprobar simplemente con la presencia del campo magnético terrestre. Este es fruto del movimiento del núcleo interno de la tierra, compuesto de una capa de hierro líquido (fluido) que envuelve a una gran masa de hierro sólido. Este núcleo , que se mueve acompasado por la rotación de la Tierra, tiene cargas en movimiento que generan una corriente eléctrica, y esa corriente eléctrica genera el campo magnético que protege a la Tierra de los embates de partículas de alta energía que proceden de nuestra estrella, el Sol.

El propio Sol, que es una nube de gas en estado de plasma, tiene poderosos campos magnéticos que determinan el movimiento de las partículas que constituyen el plasma en su interior. Por tanto, la teoría magnetohidrodinámica que usa Clancy en esa trama es muy real. Vamos entonces a desvelar sus bases.

DINÁMICA DE FLUIDOS: LAS ECUACIONES DE NAVIER–STOKES

Un fluido es un medio material continuo formado por moléculas donde sólo hay fuerzas de atracción débil, que se encuentra en uno de estos tres estados de la materia: líquido, gaseoso o plasma. La dinámica de fluidos es la parte de la física que se ocupa del estudio del movimiento de estos medios en cualquiera de estos estados, siendo la masa del fluido la parte que se desplaza de un punto a otro.

Del mismo modo que en campos electromagnéticos definíamos la corriente eléctrica como la variación de la carga con el tiempo, en los fluidos hablaremos de un flujo de corriente ψ que es la variación de la masa M del fluido respecto del tiempo.

{\psi}=\dfrac{dM}{dt}=\dfrac{d}{dt} \displaystyle \int_V {\rho}_M dV

Si tomamos una superficie donde hay ni partículas de masa mi que se mueven a una velocidad vi, podemos definir una densidad de flujo de corriente ℑM, que se expresa como

{\vec{\mathcal J}}_M=\displaystyle \sum_i N_i  m_i  {\vec {v}}_i=N  m  {\vec {v}}=M  {\vec {v}}

d{\psi}=\left( \displaystyle \sum_i N_i  m_i  {\vec {v}}_i \right) \vec{n} dA={\vec{\mathcal J}}_M  \vec{n}  dA

Flujo de corriente debida a partículas de masa m

Flujo de corriente debida a partículas de masa m

Vamos a considerar, como se muestra en la figura, que nuestro fluido es un medio material que tiene todas las partículas de la misma masa, por lo que el producto ni⋅mi se puede extraer del sumatorio, quedando entonces una velocidad v  que es la suma vectorial de todas las velocidades de las partículas del fluido.

La relación entre el flujo de corriente y la densidad de flujo de corriente es una integral a lo largo de una superficie S. Si integramos el flujo de corriente total en una superficie cerrada, por la conservación de la masa, tendremos que es igual  es la variación de la masa con respecto al tiempo, y siendo la densidad la masa por unidad de volumen, podemos escribir que

{\psi}=- \displaystyle \oint_S {\vec{\mathcal J}}_M \vec{n}  dA =\displaystyle \int_V \dfrac {d{\rho}_M}{dt} dV

Como este flujo de corriente se opone a la variación de la masa respecto del tiempo, y la masa es la integral de volumen de la densidad del fluido ρMy aplicando el teorema de la divergencia, podemos escribir esta expresión en su forma diferencial

-\vec{\nabla} \vec{J}_M = \dfrac {d{\rho}_M}{dt}

que es la ecuación de continuidad de un fluido y que representa la conservación de la masa neta dentro del fluido. Esta es una de las ecuaciones de Navier-Stokes, primordial para comprender el movimiento de las partículas del fluido.

Para la otra ecuación, debemos de recurrir a la derivada sustancial. Esta es una descripción que incluye no sólo la variación con respecto al tiempo de la magnitud física del fluido, sino que además incluye la variación de la misma respecto de la posición. La expresión de la derivada sustancial es

\dfrac {d}{dt}(*)=\dfrac {\partial}{\partial t}(*)+\vec{v} \vec{\nabla}(*)

donde v es la velocidad del fluido y  el operador diferencial que ya vimos en la entrada sobre radioenlaces. Como el momento lineal del fluido se conserva, cuando interviene la fuerza de la gravedad , actúa además una presión P en sentido contrario al movimiento en el fluido y contraponiéndose a las deformaciones una viscosidad μobtenemos que

{\rho}_M  \dfrac {d \vec{v}}{dt}=\vec{F}-\vec{\nabla}P+{\mu} \left( \dfrac {1}{3} \vec{\nabla}  \left(\vec{\nabla}  \vec{v} \right) + {\nabla}^2 \vec{v} \right)

\dfrac {\partial \vec{v}}{\partial t}+ \left( \vec{v} \vec{\nabla} \right) \vec{v} + \dfrac {1}{{\rho}_M} \vec{\nabla}P- \dfrac {\mu}{{\rho}_M}\left( \dfrac {1}{3} \vec{\nabla} \left(\vec{\nabla} \vec{v} \right) + {\nabla}^2 \vec{v} \right)=\vec{g}

Esta es la ecuación del movimiento de un fluido, y es no lineal debido a la derivada sustancial. Por tanto, en un fluido intervienen no sólo las fuerzas aplicadas en el fluido, sino también la presión de éste y su viscosidad. Si el fluido no presentase viscosidad, y aplicando la derivada sustancial  a la ecuación anterior, podemos obtener un caso particular

\dfrac {\partial \vec{v}}{\partial t}+ \left( \vec{v} \cdot \vec{\nabla} \right) \vec{v} + \dfrac {1}{{\rho}_M} \vec{\nabla}P=\vec{g}

que nos define la ecuación del movimiento de un fluido no viscoso.

DINÁMICA DE FLUIDOS: MAGNETOHIDRODINÁMICA

Si el fluido presenta partículas cargadas y aplicamos un campo electromagnético, con componentes E y B, la fuerza que interviene en este caso no es la gravedad, sino la fuerza de Lorenz que aplica el campo magnético

\vec{F}=\vec{J} \times \vec{B}=\dfrac {\left( \vec{B} \cdot \vec{\nabla} \right) \vec{B}}{{\mu}_0}-\vec{\nabla} \left(\dfrac {B^2}{2{\mu}_0} \right)

donde J es la densidad de corriente eléctrica en el fluido y B el campo magnético aplicado. En la expresión desarrollada, obtenida a partir del desarrollo de la Ley de Ampere y una de las identidades del operador diferencial , obtenemos dos términos. El primero es una fuerza de tensión magnética mientras que el segundo término se asemeja a una presión magnética producida por la densidad de energía magnética del campo. Sustituyendo F en la expresión obtenida en el apartado anterior y considerando un fluido no viscoso, tendremos que

\dfrac {\partial \vec{v}}{\partial t}+ \left( \vec{v} \cdot \vec{\nabla} \right) \vec{v} + \dfrac {1}{{\rho}_M} \vec{\nabla} \left(P+\dfrac {B^2}{2{\mu}_0} \right)=\dfrac {\left( \vec{B} \cdot \vec{\nabla} \right) \vec{B}}{{\rho}_M {\mu}_0}

Teniendo en cuenta que, según las ecuaciones de Maxwell, la divergencia del campo magnético es nula, si consideramos un campo magnético unidireccional, las variaciones espaciales de la divergencia son perpendiculares al campo, por lo que la fuerza de tensión magnética se anula y la expresión anterior queda

\dfrac {\partial \vec{v}}{\partial t}+ \left( \vec{v} \cdot \vec{\nabla} \right) \vec{v} + \dfrac {1}{{\rho}_M} \vec{\nabla} \left(P+\dfrac {B^2}{2{\mu}_0} \right)=0

Si el fluido está en estado de plasma, tenemos que la Ley de Ohm se puede escribir como

\vec{E}+\vec{v} \times \vec{B}=0

debido a que en este estado la conductividad tiende a ser infinita y para mantener el flujo de corriente, la fuerza aplicada debe ser lo más baja posile. De este modo, la Ley de Faraday queda como

\dfrac {\partial \vec{B}}{\partial t}=\vec{\nabla} \times \left( \vec{\nabla} \times \vec{B} \right)

CONCLUSIONES DE LAS ECUACIONES

Como hemos podido comprobar, la magnetohidrodinámica es, en realidad, una consecuencia de aplicar campos electromagnéticos a fluidos que poseen carga eléctrica, y en esto se basaba Clancy para “propulsar” su Octubre Rojo. No obstante, los intentos de generar un propulsor naval de estas características se han quedado en prototipos construidos en los años 60 puesto que las inducciones magnéticas que requerían eran elevadas (del orden de más de 5 Tesla) en compartimientos muy voluminosos (centenares de m3). Por tanto, el submarino de la clase Typhoon cumplía con las exigencias de proporcionar el debido dramatismo a la novela, sin despreciar por ello la base científica en la que se basaba, debido al tamaño de este tipo de naves, considerados por los EE.UU. como colosos de las profundidades debido al desplazamiento de toneladas que eran capaces de propulsar.

No quiere decir que la aplicación de la magnetohidrodinámica esté actualmente aparcada. Debido a ella, los astrofísicos han logrado generar modelos basados en estas ecuaciones para determinar las trayectorias de las partículas en el Sol y predecir erupciones solares. Y los geofísicos, comprender mejor la estructura de los núcleos de los planetas.

Además, estas técnicas son utilizadas desde hace años también en metalurgia: a medida que calentamos un metal transformándolo en un fluido, incrementamos notablemente su conductividad, de modo que se puede aplicar la Ley de Ohm para los plasmas. Esto evita, en los procesos de fundición y generación de aleaciones, que el metal entre en contacto con el crisol y adquiera escoria, mejorando notablemente la calidad de la aleación. Es el principio de los altos hornos eléctricos, que vinieron a sustituir a los antiguos que usaban carbón.

También se han encontrado aplicaciones para generar energía eléctrica a partir del movimiento de un gas en presencia de un ampo magnético, así como el confinamiento del estado de plasma para los reactores de energía nuclear de fusión. Por no hablar de los experimentos realizados en el LCH, en Suiza. No obstante, se sigue teniendo el problema de la gran inducción magnética generada y el volumen necesario para mantener los plasmas.

Sin embargo, es una pequeña parte de todo lo que se podría llegar a conseguir con mejor tecnología. A medida que se desarrolle ésta, la magnetohidrodinámica proporcionará mejores aplicaciones.

References

  1. J. R. Reitz, F. J. Milford, R. W. Christy, “Foundations of the Electromagnetic Theory”; Addison-Wesley Publishing Company, Inc, Massachusetts (U.S.A.), 1979
  2. H. Alfvén, “Existence of electromagnetic-hydrodynamic waves“. Nature 150: 405-406, 1942

 

 

MATELEC 2014. ¿Qué ha supuesto el evento?

3bc2c8d39db90e514ada-a4136d9e83Bueno, como cada dos años, éste también me ha tocado acercarme a la cita de MATELEC, una feria en la que se puede testar muy bien el estado de nuestra industria eléctrica y electrónica. Y quiero con esta entrada dar mi opinión de lo visto este año, en comparación con la edición de 2012, en la que la feria había vuelto a resurgir frente al gran batacazo, en mi opinión, que supuso la edición de 2010.

UN BREVE REPASO A OTRAS EDICIONES

Una feria sectorial es algo muy complejo. Las primeras ediciones de MATELEC eran anuales, lo que implicaba mucho gasto en las empresas para poder acudir a exponer sus novedades. Además, un producto novedoso no suele salir de un año para otro. El paso de una convocatoria anual a la actual, cada dos años, fue una medida acertada, porque permitía a las empresas plantear su asistencia desde el punto de vista de las novedades y no sólo desde un marcado carácter comercial. Una feria tecnológica se debe de nutrir no sólo de oportunidades para hacer negocio, sino que debe de mostrar el músculo de las empresas, en forma de Investigación, Desarrollo e Innovación.

Durante muchos años, las telecomunicaciones ocuparon el eje central de la feria, en lo tocante a la industria electrónica. La feria se planteaba así como una feria sectorial en la que todos los sectores (industria eléctrica, iluminación, electrónica, manufactura, etc) acudían a mostrar sus novedades, pero sin mostrar nexos de unión entre los distintos sectores. Por tanto, en aquellos años MATELEC era una feria sectorial que, internamente, también estaba fuertemente sectorizada, como si no hubiese interdependencia entre sectores.

Al ser el eje de la industria electrónica las telecomunicaciones, la desaparición en la edición de 2010 de los grandes fabricantes españoles del sector deslució enormemente la feria, reduciendola a los distribuidores, sin duda más necesitados de oportunidades de negocio, pero con incapacidad de mostrar más novedades que las que los fabricantes les presentasen. Sin la presión de exponer, los grandes fabricantes no necesitaban ya mostrar su potencial innovador y eso repercutía en los pequeños distribuidores. Personalmente, la edición de 2010 represento, a mi modo de ver, uno de los más sonoros fracasos de la historia de la feria. ¿Estaba sentenciada de muerte?

10689570_566581643487470_4057597374882271081_nLA EDICIÓN DE 2012, UNA PUERTA PARA LA ESPERANZA

Es importante que recuerde porqué concedo tanta importancia a lo que se puede considerar un evento puramente sectorial: es un momento en el que se puede testar la situación real de una determinada industria. En este caso, esta feria es el termómetro de nuestra industria eléctrica y electrónica, y como otras ferias, representa el escaparate de cómo está evolucionando en unos momentos difíciles, debido a la gran caída de consumo interno que supuso la crisis y de la enorme cantidad de empresas industriales que se han visto abocadas al cierre y desaparición. MATELEC 2010 mostró un mazazo considerable de la industria eléctrica y electrónica, con pocos stands, muchos huecos libres y la mitad de los pabellones sin llenar. El escenario era, cuanto menos, atroz.

Así que el equipo directivo de la feria, conscientes de que si no se remediaba esto en la siguiente edición, significaría la desaparición de la feria, abordaron una estrategia que considero fue muy acertada: hay que abrir la feria a sectores nuevos, incidir en nuevas tecnologías, y convertir la feria en una feria única sectorialmente, sin las divisiones que antes presentaban los diversos subsectores. Hay que aunar industria eléctrica y electrónica, que la feria presente una única voz, y todo ello lo consiguieron con el lema de la eficiencia energética. Eso hizo que la edición de 2012 fuese, también bajo mi opinión, un acierto y un éxito rotundo, que abrió las puertas a la feria a una nueva etapa de esplendor como la que vivió en las dos décadas pasadas. Aún así, quedaba el test de la consolidación, ver si esa tendencia abierta funcionaba en nuevas ediciones. Y ahora estamos en la edición de 2014, idónea para ese test.

EL MISMO LEMA, UNA GRAN NECESIDAD DE CONSOLIDACIÓN

10710697_566642286814739_7258534809365919608_nMATELEC 2014 se ha presentando con el mismo lema que hace dos años, y la misma estructura organizativa y de presentación sectorial que le supuso un acierto en 2012. Partiendo de esas premisas, parece que la feria debería haber tenido, si no un éxito claro como 2012, un peso específico importante en el sector. ¿Ha sido así?

Buena pregunta. En primer lugar, algo realmente interesante del evento, y que a mi modo de ver es el objetivo que debe tener toda feria sectorial, es ver las novedades que se producen en la industria y, además, comprobar si se están creando nuevas industrias, si la industria electrica y electrónica de nuestro país sigue viva.

Hablábamos antes de lo que pasó en MATELEC 2010, cuando los grandes fabricantes dejaron de acudir la feria, dejando solos a los distribuidores como expositores. Sin embargo, tanto en 2012 como en 2014 hemos asistido al surgimiento de nuevas industrias en el sector, unidas bajo lema de la eficiencia energética. Bajo esta premisa, la edición de 2014 no ha sido un éxito colosal pero sí ha cumplido con su objetivo principal, que es mostrar una industria viva, en un momento en el que el sector está pasando por sus horas más bajas. Han aparecido nuevos fabricantes, que han ido sustituyendo a los que dominaron la década pasada, por lo que podemos darle una buena nota en este sentido.

Los foros han funcionado correctamente, compartiendo el espacio con los expositores, y la innovación también se ha centrado en la feria. Muchas de las nuevas empresas han confiado en la innovación como motor de su crecimiento, y hay que reconocer que en este apartado también la nota puede ponerse alta.

Pero aunque esta edición nos muestra que todavía hay en España una industria viva e innovadora, que quiere sustituir a aquella industria que dominó durante la década pasada, esta edición también nos muestra que el crecimiento de esta nueva industria es sensiblemente inferior al de aquella: o sea, que nacen nuevos fabricantes, pero no lo hacen al ritmo de los que se desaparecen, y muchos de estos nuevos fabricantes son resultado de negocios iniciados por emprendedores, por lo que muchos de ellos se habrán quedado en el camino.

Una muestra clara de esa situación es la gran presencia del gigante asiático en la feria: tanto en el área de eficiencia energética como en el de iluminación, la industria china muestra una fuerte presencia, lo que indica claramente el dinamismo de este país en el tema de la industria eléctrica y electrónica y su capacidad de generación y consolidación de nuevas empresas frente a la nuestra. Empresas, que en nuestro país se podrían considerar microempresas o pequeñas empresas se han lanzado a la internacionalización, apostando fuerte por la difícil y tortuosa vía de la exportación.

¿QUÉ PODEMOS ESPERAR CARA AL FUTURO?

Como ya he mencionado, que MATELEC haya orientado su vista al campo de la eficiencia energética, en un mundo que tiene los recursos cada vez más comprometidos, ha sido un acierto en toda regla, si bien hace falta comprobar si este giro va consolidándose en la siguiente edición. Que la industria eléctrica y electrónica consolide estas nuevas oportunidades de negocio y que sustituya de forma eficaz al modelo anterior es condición necesaria para que el corazón industrial tecnológico vuelva a latir como en épocas pasadas. Por tanto, considero que la edición de 2016 será determinante para comprobar si este sector vuelve vitaminado a los mercados o no. Por eso, a mi modo de ver, esta edición se puede considerar sólo como una edición de transición en la consolidación del nuevo modelo productivo.

Simulación de un PLL digital con SIMULINK

En Octubre de 2013 realizábamos un análisis de un PLL digital con un filtro de segundo orden. Llegábamos a las expresiones matemáticas y representábamos en MatLab la forma de la fase estimada. En esta entrada vamos a utilizar la herramienta SIMULINK integrada en MatLab, que nos permite realizar análisis de sistemas mediante bloques definidos dentro del propio simulador.

Representación de un ADPLL en bloques

Si recordamos la entrada de octubre, el diagrama de bloques del PLL digital era

Diagrama de bloques del PLL digital

Diagrama de bloques del PLL digital

donde teníamos un comparador de fase, del que se obtenía la estimación de fase, el filtro de lazo y un VCO. Recordemos también que el filtro de lazo H(z) genérico, para un PLL de segundo orden, era

H(z)=\alpha + \dfrac {\beta z^{-1}}{1-z^{-1}}

Tratándose de un filtro PI (proporcional-integrador), ya que la primera constante, α, es simplemente un factor multiplicador mientras que el segundo término es la transformada z de un integrador.

Para simular la respuesta de este diagrama de bloques, vamos a generar una serie de bloques que nos permitan realizar la simulación de la PLL.

Generación de la fase de entrada

Para generar la fase de entrada, lo que vamos a hacer es generar una onda que responda a un periodo concreto T, en el que tendremos n muestras que se hacen con un periodo de muestreo TS. Por tanto, el argumento ΦREF con el que vamos a comparar el argumento del VCO es

\phi_{REF}[n]=\dfrac {2 {\pi}}{T}n+ \theta[n]

Esta señal se convierte en un fasor complejo del tipo

e^{j\phi_{REF}[n]}=e^{j \left( \dfrac {2 {\pi}}{T}n+ \theta[n] \right)}

y separando las señales en su parte real e imaginaria, tendremos dos señales a comparar:

= A_R= Re \left[ e^{j \left( \dfrac {2 {\pi}}{T}n+ \theta[n] \right)} \right]=\cos \left( \dfrac {2 {\pi}}{T}n+ \theta[n] \right)

= A_I= Im \left[ e^{j \left( \dfrac {2 {\pi}}{T}n+ \theta[n] \right)} \right]=\sin \left( \dfrac {2 {\pi}}{T}n+ \theta[n] \right)

La fase θ(n) será la fase de referencia, la que queremos sintetizar con el ADPLL, mientras el el término discreto nos permite ver la evolución temporal de la fase.

Para realizar esta generación se recurre al siguiente diagrama de bloques en SIMULINK.

Diagrama de bloques SIMULINK del generador de argumento complejo

Diagrama de bloques SIMULINK del generador de argumento complejo

donde tenemos un bloque Clock que genera la base de tiempos discreta. Esa base de tiempos se multiplica por un valor K que corresponde a la pulsación 2π/T y se suma con la fase de referencia, que corresponde con la fase de referencia θ. La salida la multiplicamos por el valor complejo j y hacemos la exponencial de ese producto. Aplicando el bloque Complex to Real-Imag, podemos extraer dos líneas, una con el coseno del argumento y otra con el seno. De este modo podemos generar la fase de entrada.

Generación del VCO

El VCO será un dispositivo que posea la fase estimada de la forma

= B_R= Re \left[ e^{-j \left( \dfrac {2 {\pi}}{T}n+ \hat \theta[n] \right)} \right]=\cos \left( \dfrac {2 {\pi}}{T}n+ \hat \theta[n] \right)

= B_I= Im \left[ e^{-j \left( \dfrac {2 {\pi}}{T}n+ \hat \theta[n] \right)} \right]=-\sin \left( \dfrac {2 {\pi}}{T}n+ \hat \theta[n] \right)

Para realizar esta operación, tendremos que usar el siguiente diagrama de bloques.

Diagrama de bloques SIMULINK del VCO

Diagrama de bloques SIMULINK del VCO

En este caso, la estimación de fase del VCO se pondrá en función de la ganancia del VCO, Kv·T. A esta estimación de fase se le suma ωT, siendo ω la pulsación 2π/Ts, con Ts el periodo de muestreo de la señal.

El resultado pasa después por un integrador y le aplicamos una función coseno y otra función seno. El bloque ()*, que cambia de signo la línea de seno, convirtiendo la señal en una compleja conjugada, extrae a la salida las ecuaciones descritas para el NCO.

Representación del comparador de fase

El comparador de fase debe proporcionar a la salida la diferencia de fase, que es:

\Delta \theta=\theta [n] - \hat \theta [n]

A partir de las ecuaciones generadas para la fase de referencia y para la estimación de fase, tenemos que hacer un multiplicador de números complejos como el que se muestra en el diagrama de bloques

Multiplicador de números complejos

Multiplicador de números complejos

Con el bloque Real-Imag to Complex se convierte AR, AI, BR, BI en sendos números complejos A y B

A=\cos \left( \dfrac {2 {\pi}}{T}n+ \theta[n] \right)+j\sin \left( \dfrac {2 {\pi}}{T}n+ \theta[n] \right)=e^{j \left(\dfrac {2 {\pi}}{T}n+ \theta[n] \right)}

B=\cos \left( \dfrac {2 {\pi}}{T}n+ \hat \theta[n] \right)-j\sin \left( \dfrac {2 {\pi}}{T}n+ \hat \theta[n] \right)=e^{-j \left(\dfrac {2 {\pi}}{T}n+ \hat \theta[n] \right)}

el resultado es un complejo CP cuyo valor es

CP=AB=e^{j \left(\dfrac {2 {\pi}}{T}n+ \theta[n] \right)}e^{-j \left(\dfrac {2 {\pi}}{T}n+ \hat \theta[n] \right)}=e^{j \left(\theta[n] - \hat \theta[n] \right)}

y podemos ver que la diferencia de fase está en el argumento de la exponencial compleja. Aplicando ahora un bloque que convierte este número en Real-Imag, obtenemos

CP_R=\cos \left(\theta[n] - \hat \theta[n] \right)

CP_I=\sin \left(\theta[n] - \hat \theta[n] \right)

Aplicándole un bloque que convierta Real-Imag en Mag-Angle, como éste

Transformación Real-Imag a Mag-Ang

Transformación Real-Imag a Mag-Ang

obtendremos el error de fase

\Delta \theta=\theta [n] - \hat \theta [n]

que es la señal resultado del comparador de fase.

Filtro de lazo

El filtro de lazo utilizado en un ADPLL suele ser un filtro proporcional-integral

Diagrama de bloques de un filtro de lazo digital

Diagrama de bloques de un filtro de lazo digital

La transformada z de este filtro la hemos visto en la introducción. En SIMULINK vamos a poner la dependencia de α, β en función de dos variables externas. El filtro de lazo en SIMULINK es

Diagrama de bloques SIMULINK de un filtro de lazo digital

Diagrama de bloques SIMULINK de un filtro de lazo digital

Donde Kp es α (factor proporcional) y Ki es β (factor integrador). Por un lado, realizamos directamente el producto de Δθ por Kp y lo llevamos a un sumador, mientras que por otro lado hacemos el producto de Δθ por Kp, lo integramos y llevamos al sumador, y con la suma obtenemos el tune (T(n)) del VCO.

La respuesta de este filtro a una señal escalón u(n) es una señal de la forma

Respuesta del filtro de lazo a una señal escalón

Respuesta del filtro de lazo a una señal escalón

que se corresponde con la expresión

T[n]=\left(K_p+K_in \right)u[n]

Estudio completo del transitorio

En SIMULINK se pueden dibujar los bloques y crear un bloque nuevo, de tal modo que tengamos simplificados los mismos. El diagrama de bloques que vamos a simular en SIMULINK es

Diagrama de bloques SIMULINK del ADPLL

Diagrama de bloques SIMULINK del ADPLL

donde PhaseRef será la fase de entrada o referencia. Tomaremos como medidas Phase_error (donde se podrá comprobar la evolución del error de fase) y Loop, donde se podrá comparar la evolución de las señales de VCO y de referencia.

Para los valores Kp y Ki (α y β), tenemos que recordar que se debía cumplir que

\alpha^2 -4 \beta < 0

Eligiendo α=0.03 y β=0.002, obtenemos que el error de fase, para una fase de entrada de π/3, es

Respuesta el PLL a un cambio de fase en la entrada

Respuesta el PLL a un cambio de fase en la entrada

Como podemos comprobar, cuando se inicia, el error de fase toma un valor muy alto, que se va trasladando como una forma senoidal amortiguada, hasta que se convierte en cero. En ese momento la fase está enganchada. Como se puede comprobar, es la respuesta a un escalón en un filtro de segundo orden con factor de amortiguamiento.

Si ahora representamos Loop, obtendremos

Seguimiento de la fase con respecto a la fase de referencia

Seguimiento de la fase con respecto a la fase de referencia

Donde podremos ver que al principio las fases son muy diferentes, pero que ambas ondas tienden a converger a la misma fase, por lo que hemos igualado la fase a la fase de referencia, lo que significa el enganche de fase.

Si ahora usásemos sólo un filtro proporcional α (β=0), y simulásemos, obtendríamos

Respuesta a un escalón de un ADPLL de primer orden

Respuesta a un escalón de un ADPLL de primer orden

Que es la respuesta a un escalón de un filtro paso bajo de primer orden.

Conclusiones

En esta entrada hemos podido ver el comportamiento de un ADPLL en régimen transitorio mediante el uso de SIMULINK, que nos proporciona una herramienta de simulación potente para poder analizar sistemas en diagrama de bloques. Hemos podido comprobar que lo analizado en la entrada de octubre de 2013 es correcto y hemos podido comprobar su comportamiento transitorio.

Referencias

  1. C. Joubert, J. F. Bercher, G. Baudoin, T. Divel, S. Ramet, P. Level; “Time Behavioral Model for Phase-Domain ADPLL based frequency synthesizer”; Radio and Wireless Symposium, 2006 IEEE, January 2006
  2. S. Mendel, C. Vogel;”A z-domain model and analysis of phase-domain all-digital phase-locked loops”; Proceedings of the IEEE Norchip Conference 2007, November 2007
  3. R. B. Staszewski, P. T. Balsara; “Phase-Domain All-Digital Phase-Locked Loop”; IEEE Transactions on Circuits and Systems II: Express Briefs; vol. 52, no. 3, March 2005

Amplificador de Banda Ultra Ancha con Baja Ganancia y Alto Rango Dinámico

En la siguiente entrada vamos a analizar un tipo de amplificador que tiene la ventaja de funcionar en banda ultra ancha y que presenta un rango dinámico muy elevado, tanto por su baja figura de ruido como por su alto nivel de salida. El cuadripolo presentado funciona usando el principio de realimentación, si bien se sustituye la realimentación clásica de resistencias por una realimentación basada en acoplador direccional. A partir de este momento, conoceremos este tipo de configuración como “realimentación inductiva”.

En muchas ocasiones hemos tenido la necesidad de dotarnos de un amplificador que pueda cubrir un rango muy amplio de banda (en torno a varias octavas) y que mantenga el rango dinámico del dispositivo semiconductor utilizado. Los métodos clásicos de realimentar amplificadores, basados en sistemas resistivos, suelen ser muy eficientes en cobertura de banda, pero tienen el inconveniente de que las resistencias generan ruido térmico y disipan potencia, por lo que el amplificador siempre suele tener más ruido y menos nivel de salida que el transistor convencional.

El sistema inductivo presenta una ventaja considerable con respecto al resistivo convencional: un acoplador direccional es un dispositivo completamente reactivo, por lo que no presenta más pérdidas que las debidas a la resistencia parásita del acoplador, cuya contribución al ruido siempre es inferior a la de una resistencia convencional.

Pero antes de pasar a describir la aplicación, vamos a recordar en qué consiste un sistema realimentado.

SISTEMAS REALIMENTADOS

En Teoría de Sistemas, un sistema realimentado es aquel que toma una muestra de la señal de salida y la compara con la entrada para modificar, estabilizar u obtener una respuesta lo más adecuada posible. Se trata del sistema de control básico, ya que una señal y(t)=A(x(t), t)·x(t) puede variar en función de t y en función de x(t). Debemos recordar que en un sistema lineal, A=cte. Es decir, que en las condiciones básicas de trabajo, una variación de t o de x(t) no deberían influir en A. Por tanto, un amplificador lineal responderá de la forma y(t)=A·x(t), siendo A un valor constante, que es lo que denominamos ganancia.

En la mayoría de los casos, A responde de forma constante, pero al aplicar la transformada de Fourier a nuestro sistema, Y(ω)=A(ω)·X(ω). O sea, que la ganancia A(ω) depende de la frecuencia. Sin embargo, sigue respondiendo como un sistema lineal, ya que no hay dependencia de x(t).

En la mayor parte de los semiconductores usados como amplificadores, la ganancia A(ω) disminuye, del orden de 6dB/oct, por lo que conseguir la misma respuesta en un ancho de banda grande requiere de técnicas de realimentación.

Un sistema realimentado presenta un diagrama de bloques como el de la figura

Sistema realimentado clásico simple

Sistema realimentado clásico simple

La señal de salida Y(ω) se compara con la señal de entrada X(ω) a través de una red pasiva K. La respuesta en frecuencia del sistema es

\dfrac {Y(\omega)}{X(\omega)}=\dfrac {A(\omega)}{1+KA(\omega)}

Por tanto, la ganancia del sistema ya no es A(ω), sino que se ha reducido al dividirla por 1+K·A(ω). Si además elegimos un K·A(ω)>>1 en la zona donde queremos trabajar, podremos ver que la ganancia del sistema realimentado no depende de la zona activa A(ω), sino de la pasiva K. Si elegimos una red de realimentación K que no dependa de la pulsación ω, podremos realizar un dispositivo amplificador que no dependa del dispositivo utilizado, sino exclusivamente de la red de realimentación utilizada para obtener la ganancia

\dfrac {Y(\omega)}{X(\omega)} \approx \dfrac {A(\omega)}{KA(\omega)}=\dfrac {|}{K}

Al sólo depender de K, los sistemas realimentados resistivos suelen ser muy habituales para obtener respuestas en bandas ultra anchas, ya que las resistencias no dependen (salvo por sus comportamientos parásitos propios de la fabricación) de la frecuencia. Es por esto que la mayor parte de la bibliografía dedicada a los amplificadores se dedica a los realimentados resistivos, frente a otro tipo de amplificadores.

AMPLIFICADORES REALIMENTADOS RESISTIVOS

Vamos a ver brevemente cuál es el comportamiento de un amplificador realimentado resistivamente. Primero vamos a analizar el comportamiento de un dispositivo semiconductor, como un transistor bipolar (usaremos un BFG520 de NXP para hacer el análisis, con parámetros S y de ruido para Vce=5V e Ic=15mA), cuya ganancia disminuye a medida que aumenta la frecuencia un orden de 6dB/oct, como se puede ver en la siguiente gráfica.

Respuesta en frecuencia de la ganancia de un transistor bipolar

Respuesta en frecuencia de la ganancia de un transistor bipolar

En la gráfica podemos ver que el valor de la ganancia en 500MHz es de 22dB, mientras que al doble (1GHz) tenemos 16,7dB, lo que implica una caída de 5,3dB en la octava. Con estas características, se plantea el circuito realimentado siguiente

Amplificador realimentado

Amplificador realimentado

cuya ganancia, para una impedancia Z0, se puede calcular usando las expresiones

G \approx 10\log_{10} \left( \dfrac {R_1}{2R_2}\right)

Z_0=\sqrt {R_1R_2}

Para el amplificador propuesto, con R1=500Ω y R2=5Ω, tenemos que Z0=50Ω y G≈17dB. Si representamos la respuesta del transistor convencional con la del realimentado

Ganancia nominal (traza azul) frente a ganancia del amplificador realimentado.

Ganancia nominal (traza azul) frente a ganancia del amplificador realimentado (traza magenta).

Si trazamos asintóticamente una línea en la traza magenta, podremos comprobar que la curva del amplificador realimentado llega a cubrir en ancho de banda hasta la frecuencia donde la ganancia del transistor convencional coincide con la del realimentado. No obstante, como el transistor tiene caída, en la frecuencia donde se corta la asíntota la caída de ganancia es de unos 3dB.

Si calculamos el factor de ruido en el transistor convencional, podemos observar que, a 600MHz, es de 1,5dB para el convencional mientras que es de 2,5dB para el realimentado. Perdemos, por tanto, 1dB de figura de ruido. Por tanto, sacrificamos el factor de ruido para obtener una ganancia prácticamente independiente de la frecuencia en una banda muy ancha.

Si calculásemos un amplificador de 11dB, el ruido subiría en el amplificador realimentado a 3,5dB. Si esto mismo lo aplicásemos a la potencia, veríamos que en nivel de salida, en el primer caso, se pierde 1,5dB de nivel de salida, mientras que en el segundo caso perdemos 2,5dB. Esto implica reducir el rango dinámico de entrada del amplificador entre 3 y 6dB, con el fin de obtener una ganancia constante entre 11 y 17dB.

LA REALIMENTACIÓN INDUCTIVA

La realimentación inductiva consiste en introducir un elemento que compare la señal de salida hacia la entrada usando una red de bajas pérdidas. Como la realimentación es negativa (se compara la señal de salida en contrafase con la señal de entrada), el mejor dispositivo para hacer esta realimentación es el acoplador direccional.

Cuando se quiere cubrir una banda muy ancha, que empiece en frecuencias muy bajas, el método para hacer acopladores direccionales es el transformador de ferrita. De ahí el nombre de inductiva, ya que usa un sistema de acoplamiento inductivo. El esquema eléctrico de un acoplador direccional a transformador es

Acoplador direccional basado en transformador de ferrita

Acoplador direccional basado en transformador de ferrita

donde la transmisión va de la puerta 1 a la 3 (o de a 2 a a 4), la puerta acoplada respecto a la puerta 1 es 2 (o 4 respecto a 3) y la puerta aislada respecto a la puerta 1 es 4 (o 3 respecto a 2). Por tanto, si ponemos la base en la puerta 3 y el colector en la 4, cuando la señal entra por la puerta 1, pasa íntegra a la 3 (entra por base y es amplificada), y parte de la señal del colector va de la puerta 4 a la puerta 3, dependiendo del factor de acoplo, y al estar en contrafase (la fase de la puerta acoplada es π rad), se compara con la señal que viene de la puerta 1, realizando la realimentación. La señal de salida va del colector a la puerta 2 íntegra.

El factor de acoplo del acoplador direccional es función del ratio entre espiras n, siendo n el número de espiras de las bobinas interiores. Se puede calcular usando

C=20\log_{10}(n)

Para calcular un acoplador direccional de 11dB, el ratio de transformación debe ser n≈3,5.

Planteamos entonces el esquema del siguiente amplificador

Amplificador con realimentación basada en acoplador direccional

Amplificador con realimentación basada en acoplador direccional

y representamos la ganancia de este amplificador, para n=3,5

Ganancia del transistor convencional (traza azul) frente al realimentado (traza roja)

Ganancia del transistor convencional (traza azul) frente al realimentado (traza roja)

Podemos ver que trazando la línea asintótica, ocurre lo mismo que en el amplificador realimentado resistivo. Sin embargo, el ruido del amplificador se mantiene igual: si el ruido del transistor es de 1,5dB, el ruido del realimentado es también de 1,5dB, por lo que el ruido se mantiene, mientras que para una ganancia similar en el resistivo, el ruido pasaba a ser 3,5dB. En el caso del nivel de salida, se obtiene lo mismo, debido a que hay transferencia directa de energía sin pérdidas resistivas.

Por tanto, con el acoplador direccional hemos logrado un amplificador con baja ganancia sin perder el rango dinámico que tiene el transistor, lo que muestra la bondad del sistema realimentado por acoplador direccional o realimentación inductiva.

CONCLUSIONES

En esta entrada hemos repasado los amplificadores realimentados y hemos presentado la realimentación inductiva. Hemos analizado la realimentación resistiva en un transistor bipolar BFG520, y hemos hecho una comparativa con una realimentación inductiva. Hemos comprobado que la realimentación inductiva obtiene un mejor rango dinámico cuando se quieren ganancias muy bajas.

Acopladores direccionales de transformador pueden ser encontrados en varios fabricantes de componentes pasivos, o pueden ser diseñados por el propio desarrollador ya que se pueden encontrar ferritas en casi todos los catálogos.

El amplificador puede ser utilizado en etapas de entrada donde se requieran ganancias bajas, tanto por su característica de rango dinámico como por su cobertura de banda, ya que puede abarcar una banda superior a la de una realimentación resistiva.

REFERENCIAS

  1. Rowan Gilmore, Les Besser, “Practical RF Circuit Design for Modern Wireless Systems Vol. II”, Artech House Publishers, Norwood MA (USA), 2003
  2. Patente de invención industrial ES-2107351-B1, “Dispositivo amplicador de banda ancha”, publicada por Ángel Iglesias S.A., Madrid (Spain), 1998

Crecimiento de whiskers sobre capa de estaño y su solución

whiskersLa entrada trata de explicar los motivos físicos que generan la aparición de whiskers sobre superficies de estaño que bañan soportes de cobre o de zinz y los métodos que facilitan la prevención de su aparición. Los whiskers son filamentos de estaño que aparecen debido a las diferencias en la tensión superficial  en la suferficie unión de ambos metales cuando se produce un baño electroquímico. En 2006, el autor, junto a su equipo de desarrollo de I+D, se encontraron con este fenómeno mientras estaban renovando un producto del catálogo de ALCAD. El equipo de I+D, a la vista de este fenómeno, que con el tiempo estropeaba la funcionalidad del producto, sobre todo cuando llevaba almacenado más de tres meses, se propuso estudiar el fenómeno, comprender las causas que lo producen y buscar posibles soluciones para su prevención en futuros desarrollos.

INTRODUCCIÓN

No hay nada mejor que la aparición de fenómenos no controlados para que se produzca Investigación en una empresa. La mayoría de las veces, las empresas privadas usan más de la D que de la I, en el desarrollo de sus productos. Sin embargo, hay ocasiones en las que un desarrollo presenta inconvenientes y fenómenos que no aparecen en el “know how” de la empresa. Estos fenómenos permiten a los equipos de I+D adquirir nuevos conocimientos y aplicarlos en el futuro.

En el año 2006 mi equipo de I+D en ALCAD se encontró un fenómeno que afectaba al correcto funcionamiento de un producto en desarrollo. Un fenómeno totalmente desconocido para nosotros, pero que ya lo habían sufrido otros. Un fenómeno conocido como whiskers. La aparición de este fenómeno producía un defectivo en el producto que estábamos desarrollando. Siendo este producto uno de los más importantes de nuestro catálogo, nos obligó a plantearnos su estudio con mayor profundidad, a fin de buscar una solución, ya que había almacenado material que podría presentar un defectivo de dimensiones considerables. Así que nos pusimos manos a la obra y todo el equipo de I+D implicado nos dispusimos a acabar con este problema.

En inglés, whiskers hace mención a los pelos del bigote de los gatos. En ingeniería mecánica, los whiskers son filamentos metálicos que crecen sobre un material que ha sido bañado con estaño de forma electroquímica. El baño electroquímico de los metales es habitual en la industria, ya que sirve para obtener acabados finos, facilitar la soldabilidad o proteger materiales más propensos a la corrosión. En nuestro caso, el baño electroquímico de estaño se hacía sobre zamak (aleación de zinz, magnesio, aluminio y cobre, muy utilizada en los productos industriales por su facilidad para la inyección en molde), a fin de facilitar la soldabilidad del zamak, ya que éste no es soldable, y proporcionar un acabado al producto. Por tanto, conocer el fenómeno y sus posibles soluciones era importante para nuestro equipo de I+D.

WHISKERS DE ESTAÑO SOBRE ZAMAK

El fenómeno aparecía en los chasis de zamak que debían presentar un acabado de baño de estaño para poder realizar soldaduras en el soporte, pues el zamak no permite soldadura convencional.

El problema surgió cuando, después de un tiempo almacenado el material, el producto, que consistía en un amplificador de banda estrecha, con un filtro de cavidad ajustado a un canal de 8MHz, presentaba desviaciones en su respuesta eléctrica. Esto obligaba a un reprocesado del filtro en Producción. En versiones anteriores del mismo producto, la una característica de ajuste en Producción obligaba a sendos ajustes en el tiempo: el primero, realizado durante el ensamblado del producto y el segundo, a las 24 horas del primer ajuste. Una vez realizados ambos ajustes, el filtro de cavidad permanecía estable, aunque se recomendaba un tercer ajuste si el producto quedaba almacenado más de 3 meses (rotación del almacén).

Sin embargo, durante el desarrollo de este producto, el equipo de I+D descubrió que el filtro no permanecía estable y que, además, el deterioro en la respuesta crecía con el tiempo. Lo que implicaba que, a pesar de hacer un tercer ajuste, no se podía asegurar que el filtro se mantuviese estable, lo que podía llevar a un proceso sin fin.

Lo que al principio parecía un problema de componentes electrónicos, con un lote defectivo de condensadores, se convirtió en un fenómeno nuevo para nuestro equipo: habíamos generado, sin quererlo, whiskers sobre la superficie de estaño.

Crecimiento de los filamentos de estaño

Crecimiento de los filamentos de estaño

Como he dicho anteriormente, los whiskers son cristales tipo filamento que crecen sobre la superficie de estaño que baña el zamak. Son cristales tan finos que son quebradizos cuando se pasa la mano sobre la superficie, y funden cuando les atraviesa una corriente de cortocircuito, que no tiene por qué ser muy elevada. En el caso del filtro se producía una disminución volumétrica de la cavidad, y esto  modificaba la frecuencia de resonancia del filtro, desplazando la respuesta a frecuencias más altas y desadaptando el filtro.

Al estudiar el fenómeno, descubrimos que se conocía desde los años 40 y que incluso la NASA estudió el fenómeno con gran profundidad, por lo que parte del camino estaba hecho: comprobamos que tenía que ver con el tipo de superficie de contacto entre ambos materiales y el grosor aplicado al baño de estaño. También intervenía la tensión superficial de ambos materiales y la temperatura de funcionamiento. En resumen, el crecimiento de los whiskers se regía bajo las expresiones formuladas por la Dr. Irina Boguslavsky y su colaborador Peter Bush:

h_1=k_1 \dfrac {\sigma}{R_W \cdot T}

h_2=k_2 \left( {\sigma}- \dfrac {k_3}{L_W} \right)^n

Según las observaciones experimentales realizadas, ambas expresiones seguían con bastante precisión el crecimiento de los whiskers observados en las capas de estaño. En las expresiones, σ representa la fuerza de stress, relacionada con la tensión superficial, LW está relacionado con grosor de la unión y n es un valor que depende de la densidad en el desplazamiento y de la temperatura T. Los términos k1, k2 y k3 son constantes que dependen de las propiedades de los materiales utilizados y RW es el radio del filamento. Los términos h1 y h2 se refieren al crecimiento del filamento cuando ya se ha producido éste en la zona de unión (h1) y en el momento en el que se produce (h2).

Crecimiento del filamento de estaño a los 3 y a los 6 meses

Crecimiento del filamento de estaño a los 3 y a los 6 meses

Nótese de estas expresiones que a menor LW, el término de la expresión de h2 crece ya que es una función exponencial en términos de n>>1. Por tanto, el grosor del baño es una de las variables que hay que controlar. En nuestro caso, el grosor del baño había sido disminuido de 20μm a 6-8μm debido a que el producto en desarrollo incorporaba conector roscado de tipo “F”, en lugar de el antiguo conector DIN de 9 ½ mm. Como los conectores se obtenían en el proceso de moldeo y posterior roscado, que se realizaban antes de proceder al baño de estaño, un baño de 20μm no permitía el mantemiento de la rosca del conector.

El otro término, σ, está relacionado con las tensión superficial que se producía en la unión, y depende exclusivamente de los materiales utilizados. Estudiando con el fabricante de los baños distintos grosores para el baño de estaño, comprobamos que las expresiones se ajustaban, ya que para grosores mayores el crecimiento era mucho mayor que para menores, pero que siempre había tendencia a que saliese, aunque en menor medida en baños de 20μm. Una vez realizado el baño, las fuerzas de stress generadas por la tensión superficial del zamak “empujaban” a los átomos de estaño hacia el exterior, con el fin de mantener la posición de equilibrio. A ellas se oponía la tensión superficial del estaño. Pero con menor grosor del baño, la fuerza generada en la superficie de contacto era superior a la de la superficie del estaño, y al tener menos grosor, las fuerzas internas que se oponían a la fuerza de la superficie eran más débiles, permitiendo el crecimiento al exterior del filamento.

POSIBLES SOLUCIONES AL CRECIMIENTO DE LOS FILAMENTOS

Una de las soluciones que aportaron desde Lucent Technologies era la realización de un baño intermedio de níquel, depositado entre la aleación de zinz y el baño de estaño.

Baño intermedio de Ni químico entre el Sn y la aleación de Zn

Baño intermedio de Ni químico entre el Sn y la aleación de Zn

El equipo de materiales de Lucent Tech., después de varios experimentos, encontró que el crecimiento de los whiskers se eliminaba notablemente, llegando a valores prácticamente nulos.

Crecimiento de ambos tipos de baño de estaño (brillante y con antimonio).

Crecimiento de ambos tipos de baño de estaño (brillante y satinado).

En las gráficas podemos ver que el crecimiento del estaño brillante sobre una superficie de cobre, que presenta similar comportamiento que el zamak, a los 2 meses crece rápidamente. Sin embargo, cuando se le aplica una capa intermedia de Ni, el crecimiento se queda en valor nulo. En el caso del estaño satinado, el crecimiento se produce a los 4 meses, y es levemente inferior. Aplicando Ni, el crecimiento se anula.

El grosor del baño de níquel podía ser de entre 1μm y 2μm, mientras que el grosor del estaño se podría mantener en torno a 8μm. De este modo, se evitaba el defectivo del roscado al mismo tiempo que se eliminaban los filamentos. Sin embargo, el proceso era bastante caro, por lo que esta opción quedó descartada.

Por tanto, nos encontrábamos frente a un problema: cómo vencer al fenómeno, que implicaba aumentar el grosor de la superficie que baña al zamak, pero que también provocaba que desapareciese el roscado del conector “F”. Una modificación del molde para dotar de más material al conector era costosa y conllevaba bastante tiempo de modificación al tener que realizar postizos en el mismo. Sin embargo era la idónea para corregir el proceso.

El problema se planteaba con el material almacenado y el material en proceso. El material almacenado ya no podía ser reprocesado puesto que estaba montado y ya no se podía bañar de nuevo. La solución intermedia fue eliminar los cristales de estaño que habían crecido mediante su limpieza con aire comprimido.

Sobre el material en proceso (piezas desmoldeadas sin bañar), se aplicó una solución temporal que consistía en la sustitución del baño de estaño por baño de plata. La plata es soldable y se puede aplicar en capas muy finas manteniendo las características, pero presenta el inconveniente de que su óxido proporciona un acabado sucio y con manchas, afectando a la estética del producto.

Al final, el estudio en profundidad del fenómeno hizo que la opción de incrementar el grosor del estaño se convirtiese estándar y eliminado el defectivo del roscado mediante el uso de una terraja que realizase el roscado sobre el material, hasta que se realizase la modificación del molde, modificando el postizo de los conectores roscados para que un baño de 10 a 20 micras no obturase las roscas.

CONCLUSIÓN

Los whiskers de estaño es un fenómeno poco entendido, se produce a nivel microscópico y parece que sólo ha sido estudiado por agencias y laboratorios de investigación nacionales, con fuertes presupuestos y dotados con medios adecuados para la observación del fenómeno.

En España se han encontrado pocos, o prácticamente ningún laboratorio, que estudiase este fenómeno en profundidad, que tiene su aparición preferentemente en la industria, por la manipulación de los materiales, por lo que casi todo el trabajo fue realizado por el equipo de investigación y desarrollo de la empresa, adquiriendo el conocimiento del medio suficiente para corregirlo y evitar que aparezca en un futuro.

Sin embargo, hay muchos artículos relacionados con el fenómeno, lo que nos permitió conocerle, analizar sus causas y sus posibles soluciones.

Referencias:

[1] H. Livingston, “GEB-0002: Reducing the Risk of Tin Whisker-Induced Failures in Electronic Equipment”; GEIA Engineering Bulletin, GEIA-GEB-0002, 2003

[2] B. D. Dunn, “Whisker formation on electronic materials”, Circuit World, vol. 2, no. 4, pp.32 -40 1976

[3] R. Diehl, “Significant characteristics of Tin and Tin-lead contact electrodeposits for electronic connectors”, Metal Finish, pp.37-42 1993

[4] D. Pinsky and E. Lambert, “Tin whisker risk mitigation for high-reliability systems integrators and designers”, Proc. 5th Int. Conf. Lead Free Electronic Components and Assemblies, 2004

[5] Chen Xu, Yun Zhang, C. Fan and J. Abys, “Understanding Whisker Phenomenon: Driving Force for Whisker Formation”, Proceedings of IPC/SMEMA Council APEX, 2002

[6] I. Boguslavsky and P. Bush, “Recrystallization Principles Applied to Whisker Growth in Tin”, Proceedings of IPC/SMEMA Council APEX, 2003

¿Qué son las Nuevas Tecnologías? El engaño del “mundo cambiante”

Se oye mucho en estos últimos años la frase “el mundo cambia y debes de adaptarte a esos cambios”. Pero, ¿es verdad que el mundo cambia continuamente? Me imagino que lo mismo deberían pensar aquellos legionarios romanos que, viendo las heridas que provocaba el “gladius hispanicus” decidieron adoptarlo como panoplia frente a la espada larga y pesada que llevaban los galos.

Y es que el mundo, en realidad, no es tan cambiante. Al menos, no como se nos quiere hacer creer. El mundo no cambia tanto, es muy estable y aplicaciones que hoy día estamos utilizando fueron descubiertas antes. Lo que se ha avanzado es la forma de aplicarlas y venderlas.
EL PROGRESO TRAJO EL DESCANSO

Hace ya varios años, en Espinosa de Bricia, pueblo de agricultores del que es originaria mi familia, colgaron un brabán y le pusieron esa frase: “El progreso trajo el descanso”. Ese es el objetivo del progreso, que podamos descansar. Pero seguimos haciendo a la hora de sacar los frutos de la tierra lo mismo que hacíamos desde que bajamos del árbol. ¿Es el mundo tan cambiante? La tierra se tiene que seguir arando como antaño, y lo que hemos desarrollado son herramientas para facilitar el trabajo. Pero esas herramientas siguen siendo herramientas. Llamémoslo tecnología, pero no mundo cambiante.

En los últimos años ha habido una tendencia a considerar que el mundo cambia y que no nos adaptamos. ¡Si somos la especie más adaptativa de La Tierra! Nos adaptamos a todo: vivimos en climas boreales y en desérticos, vivimos con 5 horas de luz o con 9 horas, vivimos en lo más recóndito y entramos en donde queramos. ¿Cuál es la razón por la que se publicita que no somos capaces de adaptarnos a los cambios? Somos la especie que mejor se adapta a ello…

Lo que se ha perdido es el horizonte de los cambios: los cambios tienen que servir para prosperar, para mejorar. Sin embargo, hoy en día los cambios y las mejoras tecnológicas, si hacemos un balance, sólo nos aportan un 20% de lo que nos cuestan. ¿Por qué? Porque nos hemos olvidado que el brabán mejoró al antiguo arado romano sólo para que los que extraían sus beneficios de la tierra pudiesen tener más tiempo libre.

LA TECNOLOGÍA COMO MOTOR DE DESARROLLO DEL SER HUMANO

La tecnología debe ser un motor de desarrollo del ser humano, en su afán de buscar la felicidad. Sin embargo, se ha convertido en un afán de obtener dinero rápido. Y eso ha llevado a la obsolescencia programada, de la que ya hemos hablado en otro comentario.

Hace poco le preguntaba a mi sobrina: “¿Por qué quieres un teléfono smartphone?”, siendo la respuesta “Porque lo tienen mis amigos”. Bajo esa premisa incontestable (si lo tienen mis amigos, ¿no lo puedo tener yo?) uno proporciona un equipo que está en exceso sobrado para las necesidades reales de la persona que lo recibe. El brabán era necesario para tener tiempo libre, pero ¿es necesario tener una cosechadora si sólo tienes una huerta?

La tecnología desarrolla al ser humano, pero hay que acotar las necesidades reales para que éstas nunca superen a nuestros deseos. Los deseos son otra cosa.