Archivo de la etiqueta: divulgación científica

El Control Automático de Ganancia: topología, funcionamiento y uso (I)

Una de las topologías más comunes en el diseño electrónico la constituye el Control Automático de Ganancia (AGC). En esta entrada vamos a proceder a estudiar cuál es su filosofía de funcionamiento, la topología básica y su uso más común. Procederemos también a su simulación en MatLab, usando el simulador SIMULINK, para entender mejor el funcionamiento de este sistema.

LOS AMPLIFICADORES LINEALES

Uno de los bloques más comunes en un sistema es el amplificador lineal. Este es un dispositivo que proporciona una salida que es directamente proporcional a la entrada. Al ser el valor de salida mayor que el valor de entrada, el bloque realiza una elevación de nivel, por tanto, se trata de una amplificación. Si el nivel de salida fuese inferior al nivel de entrada, entonces hablaríamos de una reducción de nivel o atenuación.

Los amplificadores lineales pueden ser amplificadores con ganancia fija, que es la constante de proporcionalidad entre la entrada y la salida, y con ganancia variable, de modo que pueden variar su ganancia a través de una señal de control externa vc.

v_{out}(t)=g v_{in}(t)
v_{out}(t)=g(v_c(t)) v_{in}(t)

Esta señal de control es una variable que también depende del tiempo, aunque en condiciones de control libre, que es el realizado por el usuario, una vez elegido el valor del control esa variable pasa a ser estacionaria con el tiempo y el amplificador pasa a tener ganancia fija.

Sin embargo, las señales de entrada pueden tener oscilaciones debidas al canal de propagación, y subir o bajar de valor en función del tiempo. Si el amplificador tiene ganancia fija, la salida seguirá a las variaciones de entrada.

Por lo general los amplificadores convencionales suelen tener ganancia fija con una regulación externa manipulable por el usuario. Sin embargo, dentro de los sistemas de comunicaciones se pueden dar casos en los cuales hay que asegurar siempre que la salida tome un valor fijo. Y para ello es indispensable recurrir al Control Automático de Ganancia (AGC).

EL AGC O CONTROL AUTOMÁTICO DE GANANCIA

El AGC es un sistema realimentado, que usa la variable de salida, tomando una muestra, para procesarla debidamente y generar una señal de control vc(t) que permita variar la ganancia del amplificador en función del nivel de salida que se elija. Por tanto, un AGC proporciona una variable de salida fija frente a las variaciones de entrada.

El diagrama de bloques clásico de un AGC se puede ver en la siguiente figura

Fig. 1 – Diagrama de bloques de un AGC

Consta de un VGA o amplificador variable por tensión, que responde a la expresión vista en el apartado anterior, un detector de envolvente, porque la amplitud de la señal vout contiene la información de la variación de la señal de entrada, ya que vout es proporcional a vin, un comparador, que compara la señal detectada con una señal de referencia vref, que es la que gobernará el nivel de salida adecuado en vout y un filtro integrador, que proporciona la variable de control.

Al variar vin en el instante t0, el VGA está en estado estacionario, comportándose como un amplificador lineal de ganancia fija. Esto provoca una variación en la señal de salida vout que sigue a la entrada vin. Esta variación se detecta mediante el detector de envolvente provocando un cambio en la salida del comparador, que al ser integrado modifica el valor de vc adecuándolo para que vout se corrija y pase a mantener el valor antes del cambio.

Es un proceso dinámico: las señales vin y vout varían de forma temporal pero manteniendo un nivel estacionario de envolvente. Por ejemplo, una onda senoidal pura tiene una envolvente constante, ya que la función seno está acotada

Fig. 2 – Función variable de entrada de tipo senoidal

Cuando se detecta un cambio en la envolvente en un determinado instante de tiempo, el valor de pico de la amplitud cambia y es detectado por el detector, que inicia un proceso de realimentación temporal que no afecta a la forma de la onda, pero sí a su amplitud.

Fig. 3 – Variación de la amplitud en una señal senoidal

Este cambio es el que obligará a que vc tome el valor adecuado, realizándolo de forma gradual.

MECANISMOS DE CONTROL EN UN AGC

Volvemos al sistema de la Fig.1, donde el VGA tiene una ganancia representada por la expresión

g(v_c(t))=g_o e^{-\alpha v_c(t)}

En esta expresión se elimina el dominio temporal, puesto que en este instante no nos interesa la variación temporal de vc, ya que si no hay variación en vi, vc se mantiene estacionario.

La señal de entrada es una señal de la forma

v_{in}(t)=a \sin({\omega}t+{\theta})

La señal de salida será de la forma

v_{out}(t)=g_o a e^{-\alpha \cdot v_c(t)} \sin({\omega}t+{\theta})

Esta señal pasará por el detector de envolvente, cuya salida es una señal que es proporcional a la amplitud de la señal de entrada, siendo k la constante de proporcionalidad. Por tanto, la señal de salida del detector de envolvente será

v_e=k  g_o a e^{-\alpha v_c(t)}

Esta señal se pasa a través de un amplificador logarítmico, ya que la dependencia de vE con respecto a vc es exponencial. Como la base es natural, elegimos el logaritmo natural como amplificador logarítmico, y se obtiene una tensión de salida v2 cuya expresión es

v_2=-{\alpha}  v_c+\log(k  g_o a)

En esta expresión podemos comprobar que k y g0 son valores constantes, y que a y vc son los que pueden variar con respecto al tiempo. Si ahora incluimos la variación temporal de a, tendremos que la expresión toma la forma

v_2=-{\alpha}  v_c(t)+\log(k g_o a(t))

Por tanto una variación de a queda contrarrestada por una variación de vc para que v2 vuelva a tener el valor anterior al cambio en a.

Al realizar la comparación entre la tensión v2(t) y vR, que es un valor fijo y que marcará el nivel de salida que debe mantener el amplificador, tenemos una señal v1 que tiene la siguiente expresión

v_1=-{\alpha} v_c(t)+\log(k g_o a(t) e^{-v_R})

Esta señal se pasa a través de un filtrado paso bajo que la integra, proporcionando vC(t). Si el filtro tiene una respuesta temporal h(t), lo que realizamos es una convolución de la señal v1 con la respuesta temporal h(t)

v_c(t)=h(t)*v_1(t)

Y de aquí obtenemos

v_1(t)+{\alpha} h(t)*v_1(t)=\log(k g_o a(t) e^{-v_R})

En el dominio temporal la convolución es una ecuación integral dinámica, por lo que si usamos el dominio de Laplace, pasaremos esa respuesta convolucional a una respuesta en el dominio de la variable compleja s que es lineal. Usando este dominio, la ecuación anterior queda como

V_1(s)+{\alpha} H(s) V_1(s)=\mathcal{L}[log(k  g_o a(t) e^{-v_R})]

que es el resultado de aplicar el operador de la transformada de Laplace. Vamos a estudiar el valor de V1(s) si la salida tiene un valor una amplitud b

v_{out}(t)=b \sin({\omega}t+{\theta})

quitando la dependencia con k y con g0. En este casi, siguiendo los mismos pasos que en el caso anterior, tendremos que

v_1(t)=\log(b(t) e^{-v_R})

V_1(s)=\mathcal{L} [\log(b(t) e^{-v_R})]

(1+{\alpha} H(s)) \mathcal{L}[\log(b(t) e^{-v_R})]=\mathcal{L}[\log(k g_o a(t) e^{-v_R})]

\dfrac {\mathcal{L}[\log(b(t) e^{-v_R})]}{\mathcal{L}[\log(k g_o a(t) e^{-v_R})]}=\dfrac {1}{1+{\alpha} H(s)}

El primer término es el cociente de dos funciones, una que depende de la amplitud de salida y otra que depende de la amplitud de entrada. Si elegimos el producto k·g0=1, obtendremos que

\dfrac {\mathcal{L}[\log(b(t) e^{-v_R})]}{\mathcal{L}[\log(a(t) e^{-v_R})]}=\dfrac {\mathcal{L}[\log(b(t))]}{\mathcal{L}[\log(a(t)]}=\dfrac {1}{1+{\alpha} H(s)}

Como y(t) y x(t) tienen valores de tensión, podemos aplicar la definición de dB, que es:

b_{dB}(t)=20 \log_{10}(b(t))

a_{dB}(t)=20 \log_{10}(a(t))

por lo que el cociente anterior quedaría

\dfrac {\mathcal{L}[\log(b(t) e^{-v_R})]}{\mathcal{L}[\log(a(t) e^{-v_R})]}=\dfrac {\mathcal{L}[b_{dB}(t)]}{\mathcal{L}[a_{dB}(t)]}=\dfrac {B_{dB}(s)}{A_{dB}(s)}

eliminando el dominio temporal y convirtiendo el sistema en un sistema totalmente lineal. Entonces tendremos que

\dfrac {B_{dB}}{A_{dB}}=\dfrac {1}{1+{\alpha} H(s)}

siendo ésta la función de transferencia de la variación en dB de las amplitudes de salida y de entrada.

Si el filtro utilizado es un filtro integrador con polo en el origen, de la forma

H(s)= \dfrac {C}{s}

tendremos que la expresión nos quedará

\dfrac {B_{dB}}{A_{dB}}=\dfrac {1}{1+{\alpha} C}

Supongamos ahora que damos un salto de 1 dB a la envolvente de entrada AdB, pudiendo ser hacia arriba o hacia abajo. Llamamos a la nueva envolvente A’dB(s), y a la de salida B’dB(s). Como subimos o bajamos un 1 dB, tenemos que :

{A'}_{dB}(s)=A_{dB}(s) \pm 1

Y además tenemos que

\dfrac {B_{dB}}{A_{dB}}=\dfrac {{B'}_{dB}}{{A'}_{dB}}=\dfrac {1}{1+{\alpha} C}

ya que la realimentación debe responder siempre de la misma manera. Haciendo la sustiticuón de la expresión de la variación de entrada en la expresión anterior tenemos

\dfrac {B_{dB}}{A_{dB}}=\dfrac {{B'}_{dB}}{A_{dB}(s) \pm 1}=\dfrac {1}{1+{\alpha} C}

Por tanto, podremos calcular B’dB(s) multiplicando por la función de transferencia

{B'}_{dB}(s)=\dfrac {s}{s+{\alpha} \cdot C} \cdot A_{dB}(s) \pm \dfrac {s}{s+{\alpha} C}

Y sabiendo que el primer término es precisamente BdB(s), podemos poner la expresión como

{B'}_{dB}(s)-B_{dB}(s)=\pm \dfrac {s}{s+{\alpha} C}=\pm 1 \mp \dfrac {{\alpha} C}{s+{\alpha} C}

La ecuación anterior liga a la nueva envolvente B’dB(s) con la anterior BdB(s). Como es una respuesta temporal, tendremos que aplicar la transformada inversa, obteniendo

{B'}_{dB}(t)-B_{dB}(t)=\pm {\delta}(t) \mp {{\alpha} C e^{-{\alpha} C t}}

Estudiemos este resultado: Cuando subimos 1 dB (instante t=0), la ecuación queda como b’dB(t)–bdB(t)=+δ(t)=+1, ya que en t=0 el filtro h(t) todavía no ha respondido. Por tanto, en el instante inicial la diferencia entre la envolvente nueva y la inicial es de 1dB. Cuando t comienza a crecer, tenemos una respuesta exponencial decreciente debido al segundo término de la expresión anterior, por lo que a medida que va aumentando el tiempo, la diferencia entre la envolvente nueva b’dB(t) y la inicial bdB(t) va disminuyendo (inicialmente b’dB(t)>bdB(t)) hasta que ambas son iguales.

Si por el contrario, disminuimos la envolvente de entrada 1dB, la respuesta queda como b’dB(t)–bdB(t)=-δ(t)=-1, de modo que cuando disminuimos 1dB (instante t=0), la envolvente final disminuye en ese valor por la misma razón que en el caso anterior. Por tanto, en el instante inicial la diferencia entre la envolvente nueva y la inicial es de –1dB, que es el salto que se produce en la señal de entrada. Cuando t comienza a crecer, se produce una exponencial creciente que reduce esa diferencia (en este caso tenemos que b’dB(t)<bdB(t)), por lo que la diferencia también va disminuyendo hasta que ambas vuelven a ser iguales.

De aquí se deduce que cuando la envolvente de entrada sube o baja 1 dB, la de salida, en el instante inicial, tiende a subir o bajar siguiendo a la variación de la envolvente de entrada, pero cuando pasa un tiempo, la de salida se estabiliza hasta que llega al valor inicial ydB(t).

El tiempo de respuesta t del AGC, en el que la diferencia de envolventes es precisamente α·C/e es τ=1/α·C, que es la constante de tiempo de respuesta del AGC. Si ese tiempo es muy alto, el AGC responde lentamente, mientras que si ese tiempo es muy bajo, el AGC responde rápidamente. Es necesario un compromiso con el tiempo de respuesta del AGC en señales que contienen también variaciones nominales por su contenido, como las señales analógicas de audio o vídeo, para no confundir una variación de nivel con una variación de ese contenido.

CONCLUSION

En esta entrada hemos podido comprobar cómo es el diagrama de bloques de un AGC, estudiando su respuesta en el dominio de Laplace y en el dominio temporal. Hemos llegado a una relación de transferencia que nos permite relacionar las variaciones de la señal de salida con las de entrada y cómo podemos calcular el tiempo de respuesta del AGC, que tendremos que incluir a través del filtro integrador y del estudio de la constante de variación de la ganancia del amplificador.

En la siguiente entrada realizaremos el estudio este sistema mediante SIMULINK.

REFERENCIAS

  1. Benjamin C. Kuo; “Automatic Control Systems”; 2nd ed.; Englewood Cliffs, NJ; Prentice Hall; 1975
  2. Pere Matí i Puig; “Subsistemas de radiocomunicaciones analógicos”;Universitat Oberta de Catalunya;2010

 

Amplificador de Banda Ultra Ancha con Baja Ganancia y Alto Rango Dinámico

En la siguiente entrada vamos a analizar un tipo de amplificador que tiene la ventaja de funcionar en banda ultra ancha y que presenta un rango dinámico muy elevado, tanto por su baja figura de ruido como por su alto nivel de salida. El cuadripolo presentado funciona usando el principio de realimentación, si bien se sustituye la realimentación clásica de resistencias por una realimentación basada en acoplador direccional. A partir de este momento, conoceremos este tipo de configuración como “realimentación inductiva”.

En muchas ocasiones hemos tenido la necesidad de dotarnos de un amplificador que pueda cubrir un rango muy amplio de banda (en torno a varias octavas) y que mantenga el rango dinámico del dispositivo semiconductor utilizado. Los métodos clásicos de realimentar amplificadores, basados en sistemas resistivos, suelen ser muy eficientes en cobertura de banda, pero tienen el inconveniente de que las resistencias generan ruido térmico y disipan potencia, por lo que el amplificador siempre suele tener más ruido y menos nivel de salida que el transistor convencional.

El sistema inductivo presenta una ventaja considerable con respecto al resistivo convencional: un acoplador direccional es un dispositivo completamente reactivo, por lo que no presenta más pérdidas que las debidas a la resistencia parásita del acoplador, cuya contribución al ruido siempre es inferior a la de una resistencia convencional.

Pero antes de pasar a describir la aplicación, vamos a recordar en qué consiste un sistema realimentado.

SISTEMAS REALIMENTADOS

En Teoría de Sistemas, un sistema realimentado es aquel que toma una muestra de la señal de salida y la compara con la entrada para modificar, estabilizar u obtener una respuesta lo más adecuada posible. Se trata del sistema de control básico, ya que una señal y(t)=A(x(t), t)·x(t) puede variar en función de t y en función de x(t). Debemos recordar que en un sistema lineal, A=cte. Es decir, que en las condiciones básicas de trabajo, una variación de t o de x(t) no deberían influir en A. Por tanto, un amplificador lineal responderá de la forma y(t)=A·x(t), siendo A un valor constante, que es lo que denominamos ganancia.

En la mayoría de los casos, A responde de forma constante, pero al aplicar la transformada de Fourier a nuestro sistema, Y(ω)=A(ω)·X(ω). O sea, que la ganancia A(ω) depende de la frecuencia. Sin embargo, sigue respondiendo como un sistema lineal, ya que no hay dependencia de x(t).

En la mayor parte de los semiconductores usados como amplificadores, la ganancia A(ω) disminuye, del orden de 6dB/oct, por lo que conseguir la misma respuesta en un ancho de banda grande requiere de técnicas de realimentación.

Un sistema realimentado presenta un diagrama de bloques como el de la figura

Sistema realimentado clásico simple

Sistema realimentado clásico simple

La señal de salida Y(ω) se compara con la señal de entrada X(ω) a través de una red pasiva K. La respuesta en frecuencia del sistema es

\dfrac {Y(\omega)}{X(\omega)}=\dfrac {A(\omega)}{1+KA(\omega)}

Por tanto, la ganancia del sistema ya no es A(ω), sino que se ha reducido al dividirla por 1+K·A(ω). Si además elegimos un K·A(ω)>>1 en la zona donde queremos trabajar, podremos ver que la ganancia del sistema realimentado no depende de la zona activa A(ω), sino de la pasiva K. Si elegimos una red de realimentación K que no dependa de la pulsación ω, podremos realizar un dispositivo amplificador que no dependa del dispositivo utilizado, sino exclusivamente de la red de realimentación utilizada para obtener la ganancia

\dfrac {Y(\omega)}{X(\omega)} \approx \dfrac {A(\omega)}{KA(\omega)}=\dfrac {|}{K}

Al sólo depender de K, los sistemas realimentados resistivos suelen ser muy habituales para obtener respuestas en bandas ultra anchas, ya que las resistencias no dependen (salvo por sus comportamientos parásitos propios de la fabricación) de la frecuencia. Es por esto que la mayor parte de la bibliografía dedicada a los amplificadores se dedica a los realimentados resistivos, frente a otro tipo de amplificadores.

AMPLIFICADORES REALIMENTADOS RESISTIVOS

Vamos a ver brevemente cuál es el comportamiento de un amplificador realimentado resistivamente. Primero vamos a analizar el comportamiento de un dispositivo semiconductor, como un transistor bipolar (usaremos un BFG520 de NXP para hacer el análisis, con parámetros S y de ruido para Vce=5V e Ic=15mA), cuya ganancia disminuye a medida que aumenta la frecuencia un orden de 6dB/oct, como se puede ver en la siguiente gráfica.

Respuesta en frecuencia de la ganancia de un transistor bipolar

Respuesta en frecuencia de la ganancia de un transistor bipolar

En la gráfica podemos ver que el valor de la ganancia en 500MHz es de 22dB, mientras que al doble (1GHz) tenemos 16,7dB, lo que implica una caída de 5,3dB en la octava. Con estas características, se plantea el circuito realimentado siguiente

Amplificador realimentado

Amplificador realimentado

cuya ganancia, para una impedancia Z0, se puede calcular usando las expresiones

G \approx 10\log_{10} \left( \dfrac {R_1}{2R_2}\right)

Z_0=\sqrt {R_1R_2}

Para el amplificador propuesto, con R1=500Ω y R2=5Ω, tenemos que Z0=50Ω y G≈17dB. Si representamos la respuesta del transistor convencional con la del realimentado

Ganancia nominal (traza azul) frente a ganancia del amplificador realimentado.

Ganancia nominal (traza azul) frente a ganancia del amplificador realimentado (traza magenta).

Si trazamos asintóticamente una línea en la traza magenta, podremos comprobar que la curva del amplificador realimentado llega a cubrir en ancho de banda hasta la frecuencia donde la ganancia del transistor convencional coincide con la del realimentado. No obstante, como el transistor tiene caída, en la frecuencia donde se corta la asíntota la caída de ganancia es de unos 3dB.

Si calculamos el factor de ruido en el transistor convencional, podemos observar que, a 600MHz, es de 1,5dB para el convencional mientras que es de 2,5dB para el realimentado. Perdemos, por tanto, 1dB de figura de ruido. Por tanto, sacrificamos el factor de ruido para obtener una ganancia prácticamente independiente de la frecuencia en una banda muy ancha.

Si calculásemos un amplificador de 11dB, el ruido subiría en el amplificador realimentado a 3,5dB. Si esto mismo lo aplicásemos a la potencia, veríamos que en nivel de salida, en el primer caso, se pierde 1,5dB de nivel de salida, mientras que en el segundo caso perdemos 2,5dB. Esto implica reducir el rango dinámico de entrada del amplificador entre 3 y 6dB, con el fin de obtener una ganancia constante entre 11 y 17dB.

LA REALIMENTACIÓN INDUCTIVA

La realimentación inductiva consiste en introducir un elemento que compare la señal de salida hacia la entrada usando una red de bajas pérdidas. Como la realimentación es negativa (se compara la señal de salida en contrafase con la señal de entrada), el mejor dispositivo para hacer esta realimentación es el acoplador direccional.

Cuando se quiere cubrir una banda muy ancha, que empiece en frecuencias muy bajas, el método para hacer acopladores direccionales es el transformador de ferrita. De ahí el nombre de inductiva, ya que usa un sistema de acoplamiento inductivo. El esquema eléctrico de un acoplador direccional a transformador es

Acoplador direccional basado en transformador de ferrita

Acoplador direccional basado en transformador de ferrita

donde la transmisión va de la puerta 1 a la 3 (o de a 2 a a 4), la puerta acoplada respecto a la puerta 1 es 2 (o 4 respecto a 3) y la puerta aislada respecto a la puerta 1 es 4 (o 3 respecto a 2). Por tanto, si ponemos la base en la puerta 3 y el colector en la 4, cuando la señal entra por la puerta 1, pasa íntegra a la 3 (entra por base y es amplificada), y parte de la señal del colector va de la puerta 4 a la puerta 3, dependiendo del factor de acoplo, y al estar en contrafase (la fase de la puerta acoplada es π rad), se compara con la señal que viene de la puerta 1, realizando la realimentación. La señal de salida va del colector a la puerta 2 íntegra.

El factor de acoplo del acoplador direccional es función del ratio entre espiras n, siendo n el número de espiras de las bobinas interiores. Se puede calcular usando

C=20\log_{10}(n)

Para calcular un acoplador direccional de 11dB, el ratio de transformación debe ser n≈3,5.

Planteamos entonces el esquema del siguiente amplificador

Amplificador con realimentación basada en acoplador direccional

Amplificador con realimentación basada en acoplador direccional

y representamos la ganancia de este amplificador, para n=3,5

Ganancia del transistor convencional (traza azul) frente al realimentado (traza roja)

Ganancia del transistor convencional (traza azul) frente al realimentado (traza roja)

Podemos ver que trazando la línea asintótica, ocurre lo mismo que en el amplificador realimentado resistivo. Sin embargo, el ruido del amplificador se mantiene igual: si el ruido del transistor es de 1,5dB, el ruido del realimentado es también de 1,5dB, por lo que el ruido se mantiene, mientras que para una ganancia similar en el resistivo, el ruido pasaba a ser 3,5dB. En el caso del nivel de salida, se obtiene lo mismo, debido a que hay transferencia directa de energía sin pérdidas resistivas.

Por tanto, con el acoplador direccional hemos logrado un amplificador con baja ganancia sin perder el rango dinámico que tiene el transistor, lo que muestra la bondad del sistema realimentado por acoplador direccional o realimentación inductiva.

CONCLUSIONES

En esta entrada hemos repasado los amplificadores realimentados y hemos presentado la realimentación inductiva. Hemos analizado la realimentación resistiva en un transistor bipolar BFG520, y hemos hecho una comparativa con una realimentación inductiva. Hemos comprobado que la realimentación inductiva obtiene un mejor rango dinámico cuando se quieren ganancias muy bajas.

Acopladores direccionales de transformador pueden ser encontrados en varios fabricantes de componentes pasivos, o pueden ser diseñados por el propio desarrollador ya que se pueden encontrar ferritas en casi todos los catálogos.

El amplificador puede ser utilizado en etapas de entrada donde se requieran ganancias bajas, tanto por su característica de rango dinámico como por su cobertura de banda, ya que puede abarcar una banda superior a la de una realimentación resistiva.

REFERENCIAS

  1. Rowan Gilmore, Les Besser, “Practical RF Circuit Design for Modern Wireless Systems Vol. II”, Artech House Publishers, Norwood MA (USA), 2003
  2. Patente de invención industrial ES-2107351-B1, “Dispositivo amplicador de banda ancha”, publicada por Ángel Iglesias S.A., Madrid (Spain), 1998

Introducción al cálculo de radioenlaces

images1En el mundo moderno, la conexión inalámbrica es muy habitual. El uso de dispositivos móviles se ha convertido en una de las herramientas más habituales para las comunicaciones. Pero, ¿cuál es la forma de conexión que permite que dos dispositivos estén conectados sin necesidad de hilos? La respuesta es conocida por casi todos: se trata de una conexión electromagnética, usando las propiedades del electromagnetismo para poder transferir información de un lugar a otro sin necesidad de más conexión física que la propagación electromagnética a través del aire. En esta entrada vamos a mostrar los modelos de radioenlaces más comunes y cómo se puede calcular un enlace por radio.

¿Qué es un radioenlace?

Entendemos por radioenlace a aquella conexión que se realiza entre un emisor y un receptor utilizando como medio de propagación el espacio libre.

La propagación de ondas electromagnéticas fue desarrollada por Maxwell a mediados del S. XIX, cuando unificó las teorías eléctrica y magnética en una teoría más completa, denominada teoría electromagnética, conteniendo todos los fenómenos correspondientes a los campos eléctrico y magnético formulados por Coulomb, Gauss, Lenz, Ampere, Faraday, etc.

Las ecuaciones de Maxwell, fundamentales para comprender la teoría electromagnética, son un compendio de cuatro leyes que describen el comportamiento de los campos electromagnéticos. Antes de pasar a describir el comportamiento en el espacio de un campo electromagnético, vamos a recordar dichas ecuaciones.

Ecuaciones de Maxwell

Como se ha dicho, las ecuaciones de Maxwell son un compendio de leyes formuladas sobre los campos eléctricos y magnéticos que se aúnan en cuatro ecuaciones fundamentales.

Las dos primeras provienen del Teorema de Gauss aplicado a ambos campos, que dice que las fuentes o sumideros de los campos son las magnitudes que los originan

\vec{\nabla}\vec{E}= \dfrac{\rho}{\epsilon_0}

\vec{\nabla}\vec{B}= {0}

El operador nabla es un operador diferencial de tipo vectorial, que en coordenadas generalizadas se describe por la expresión

\vec{\nabla} = \dfrac {1}{h_i} \dfrac {\partial}{\partial q_i} {\vec{u}}_{q_i}+\dfrac {1}{h_j} \dfrac {\partial}{\partial q_j} {\vec{u}}_{q_j}+\dfrac {1}{h_k} \dfrac {\partial}{\partial q_k} {\vec{u}}_{q_k}

Con qi, qj y qk coordenadas ortogonales entre sí, y hi, hj y hk factores de escala. El término ε0 se denomina permitividad eléctrica del vacío y ρ es la densidad volumétrica de carga.

Usando estos términos diferenciales, estas dos ecuaciones expresan que las fuentes y sumideros de un campo eléctrico E son las cargas eléctricas, mientras que un campo magnético B no tiene fuentes o sumideros (no existe el monopolo magnético).

La tercera ecuación deriva de la ley de Faraday, que dice que un campo magnético variable con el tiempo genera una fuerza electromotriz, cuya expresión es

\vec{\nabla}\times\vec{E}=-\dfrac{\partial \vec{B}}{\partial t}

Por último, se expresa la ley generalizada de Ampere, que dice que un campo magnético B es generado por corrientes eléctricas y por un campo eléctrico variable con el tiempo

\vec{\nabla}\times \vec{B}=\mu_0\vec{J}+\mu_0 \epsilon_0 \dfrac{\partial \vec{E}}{\partial t}

donde μ0 es la permeabilidad magnética del vacío.

De estas ecuaciones se pueden deducir dos ecuaciones de onda, que son

{\nabla}^2\vec{E}-{\mu_0}{\epsilon_0}\dfrac{\partial^2 \vec{E}}{\partial t^2}-{\mu_0}{\sigma}\dfrac{\partial \vec{E}}{\partial t}=0

{\nabla}^2\vec{B}-{\mu_0}{\epsilon_0}\dfrac{\partial^2 \vec{B}}{\partial t^2}-{\mu_0}{\sigma}\dfrac{\partial \vec{B}}{\partial t}=0

donde σ es la conductividad eléctrica del medio. El operador diferencial usado en términos de espacio es el operador laplaciano.

{\nabla}^2=\dfrac {1}{h_i} \dfrac {\partial}{\partial q_i} \left( {\dfrac {1}{h_i} \dfrac {\partial}{\partial q_i}} \right)+\dfrac {1}{h_j} \dfrac {\partial}{\partial q_j} \left( {\dfrac {1}{h_j} \dfrac {\partial}{\partial q_j}} \right)+\dfrac {1}{h_k} \dfrac {\partial}{\partial q_k}  \left( {\dfrac {1}{h_k} \dfrac {\partial}{\partial q_k}} \right)

Por tanto, en cualquier medio material lineal homogéneo se pueden propagar ondas electromagnéticas, que son resolubles usando estas ecuaciones deducidas de las ecuaciones de Maxwell. Sin embargo, no todas las soluciones a estas ecuaciones pueden dar como resultado ondas electromagnéticas. Los resultados obtenidos tienen que satisfacer también las ecuaciones de Maxwell.

Radiación electromagnética como medio de comunicación

La formulación de las ecuaciones de Maxwell permitió el desarrollo de las telecomunicaciones a larga distancia, sin uso de hilos, resolviendo el problema de las costosas infraestructuras que supondría la propagación guiada. Fueron Tesla y Marconi los primeros que experimentaron con este tipo de comunicación, que dio origen a la radiocomunicación. Un emisor, por un lado, transmitía una onda electromagnética que un receptor era capaz de recibir y reproducir y viceversa, usando como medio de trasmisión el aire.

Sin embargo, este sistema de comunicación no está exento de problemas a la hora de realizar una correcta transmisión. En el espacio libre, las ondas electromagnéticas no están guiadas, sino que se propagan, se reflejan, interfieren, se atenúan, se difractan en presencia de obstáculos… Por tanto, la conexión inalámbrica está sometida a una serie de fenómenos esenciales para poder realizar un radioenlace. La primera, y más esencial, es la que define las pérdidas en el espacio libre deducida de las ecuaciones de Maxwell.

Esquema de un radioenlace

Esquema de un radioenlace

Pérdidas en la propagación en el espacio

La primera de las pérdidas que se producen en el espacio libre (es decir, sin presencia de obstáculos ni ningún fenómeno interferente) la dedujo Friis de resolver las ecuaciones de Maxwell. Con esta expresión se puede calcular, en primera instancia, la potencia recibida por una antena en función de la potencia transmitida por el emisor. Esta ecuación depende de la frecuencia utilizada y de la distancia a la que se encuentra el receptor, y se describe por

L_F(dB)=32,44+20 \log_{10} r + 20 \log_{10} f

siendo r la distancia en km y f la frecuencia en MHz.

El modelo de Friis es válido para receptores que se encuentran alejados de la antena transmisora, denominada zona de Franhoufer (no es válido para campo cercano o zona de Raileigh) y que no se encuentre con obstáculos (zona de Fresnel), ni con interferencias debidas a la reflexión de la señal (fading). Por su simplicidad, es muy útil para las primeras aproximaciones de un radioenlace, ya que éste se diseña de tal modo que la propagación de la onda sea plana a una distancia muy grande, partiendo de una onda cilíndrica en campo cercano, como por ejemplo una estación repetidora de radiotelevisión.

Sin embargo, en la mayoría de los radioenlaces modernos, sobre todo en comunicaciones móviles, se utilizan modelos más complejos, deducidos de forma estadística a partir de datos experimentales y para entornos urbanos, suburbanos y de poca densidad de población. Los modelos más utilizados en el cálculo de radioenlaces en entornos urbanos son los modelos de Okumura y Okumura-Hata.

El modelo de Okumura es el modelo más simple, aunque está limitado en la banda de frecuencias de 150MHz a 1920MHz. La expresión de las pérdidas de este modelo es

L(dB)=L_F+A_{mu}-G(h_{TX})-G(h_{RX})-G_{amb}

donde LF son las pérdidas en el espacio libre calculadas por el modelo de Friss y Amu es la atenuación relativa promedio. Cabe destacar que intervienen también las contribuciones de ganancia por la posición en altura de las antenas utilizadas (G(hTX) y G(hRX)) así como el ambiente en el que se encuentre (Gamb).

El modelo de Okumura es mucho más restrictivo que el de Friis, ya que en el espacio libre, una señal de 1000MHz con una distancia de 10km entre emisor y receptor muestra unas pérdidas de 112,44dB, mientras que el modelo de Okumura muestra 170-190dB, dependiendo de la altura del transmisor.

Un modelo más simple que el de Okumura es el de Okumura-Hata, que está basado en los datos de pérdidas del de Okumura, pero que simplifica el modelo para adaptarlo a un entorno urbano estándar (alturas de antenas transmisoras entre 30 y 200 m, de antenas receptoras entre 1 y 10 m y frecuencias entre 150 y 1500MHz), utilizada para el cálculo de enlaces móviles. Su expresión, en un entorno urbano, es

L_{urb}(dB)=69,55+26,16 \log_{10}f-13,82 \log_{10}h_{TX}-a(h_{RX})+(44,9-6,55 \log_{10} r)

siendo a(hRX) un factor de corrección de la antena receptora que viene dado por una serie de expresiones, en función del entorno (urbano, suburbano y espacios abiertos)

En este caso, si tenemos una antena transmisora a 100m de altura, en un entorno urbano, y una receptora a 5m de altura, a una frecuencia de 1000MHz y 5km de distancia tendremos

  • Para ciudades pequeñas

a(h_{RX})=0,8+(1,1 \log_{10}f-0,7) h_{RX}-1,56 \log_{10}f

  • Para entornos medios y grandes

a(h_{RX})=0,89  [\log_{10}(1,54 h_{RX})]^2-1,1  para 150≤f≤200

a(h_{RX})=3,2 [\log_{10}(11,75 h_{RX})]^2-4,97  para 200≤f≤1500

Se introduce un factor de corrección para entornos suburbanos

a(h_{RX})=L_{urb}(dB)-2 \left[ \log_{10} \left( \dfrac {f}{28} \right) \right]^2-5,4

y para entornos abiertos

a(h_{RX})=L_{urb}(dB)-4,78 [\log_{10}f]^2+4,78 \log_{10}f-40,94

  • Pérdidas en el espacio libre: 106,41 dB
  • Pérdidas en el modelo de Okumura: 133,50 dB
  • Pérdidas en el modelo de Okumura-Hata: 133,50 dB

El modelo de Okumura-Hata empieza a fallar cuando nos salimos de los valores límite para el que está definido.

Hay otros dos modelos basados en los modelos de difracción, denominados de Walfisch-Bertoni y de Walfisch-Ikegami, muy usados cuando se tratan entornos con obstáculos. Son modelos más complejos, basados en las pérdidas debidas por a la difracción de la señal, que dependen del entorno y que no se pueden formular de forma genérica. Se tratarán en una futura entrada.

El efecto de los obstáculos

Los obstáculos provocan difracción en la señal propagada. El fenómeno de la difracción es la desviación que se produce en las ondas electromagnéticas al encontrarse con un obstáculo. La difracción produce interferencias debido al cambio de caminos (cambios de fase en la onda propagada).

Ejemplo de la 1ª elipsoide de Fresnel

Ejemplo de la 1ª elipsoide de Fresnel

En un radioenlace, existe una zona de propagación más o menos segura que es la zona de Fresnel. Esta zona, que tiene forma de elipsoide es aquella en la que se asegura que la diferencia de fase entre las ondas propagadas no sea de π radianes.

Las elipsoides de Fresnel se pueden calcular en varias zonas mediante la expresión

r_n=547,7 \sqrt{\dfrac {n}{f} \dfrac {d_1 d_2}{d_1+d_2}}

Siendo rn el máximo radio de la zona en metros (n=1, 2, 3,…), d1 la distancia del emisor al obstáculo en km, d2 la distancia del receptor al obstáculo en km y f la frecuencia de la señal propagada en MHz.

Los radioenlaces se calculan generalmente en primera zona de Fresnel, por lo que la expresión queda

r_n=547,7 \sqrt{\dfrac {1}{f} \dfrac {d_1 d_2}{d_1+d_2}}

En el punto central tendremos el máximo de la elipsoide, por lo que podremos calcular su radio usando

r_1=273,9 \sqrt{\dfrac {d_1+d_2}{f}}

Cálculo de un radioenlace simple

Vamos a suponer ahora que tenemos un radioenlace con un transmisor de 1 kW, a 1 GHz, y usamos para la transmisión una antena de ganancia 14 dBi. Queremos calcular el nivel de campo que se obtiene a 10 km del transmisor, en propagación en el espacio libre.

En primer lugar, se calcula la Potencia Radiada Efectiva (ERP), que es la potencia que se transmite en la dirección marcada por la antena, y que viene dada por la expresión

ERP(dBm)=P_{TX}(dBm)+G_{TX}(dBi)=60+14=74dBm

La atenuación en el espacio libre es

L_F(dB)=32,44+20 \log_{10} 10 + 20 \log_{10} 1000 =112,44dB

La intensidad de campo a esa distancia se puede calcular mediante la expresión

FieldStrengh(dB{\mu}V/m)=ERP(dBm)-20 \log_{10} r +37 =91 dB{\mu}V/m

Si ahora queremos ver cuál es la potencia de la señal recibida, usando una antena de ganancia conocida (por ejemplo, una antena de 1 dBi), simplemente tendremos que aplicar

Received(dBm)=FieldStrengh(dB{\mu}V/m)+G_{RX}(dBi)-20 \log_{10} f -70,2=91+1-60-70,4=-38,4 dBm

que será el nivel obtenido en la recepción. El nivel recibido es de 145 nW.

Conclusiones

En esta entrada hemos analizado las pérdidas de propagación de una onda electromagnética usando los diferentes modelos conocidos: el modelo de Friis, el de Okumura y el de Okumura-Hata, y hemos establecido una comparativa entre los valores que se obtienen en ambos modelos.

Para el cálculo de un radioenlace simple, donde el repetidor está muy elevado y hay pocos obstáculos, la aproximación de Friis es un modelo sencillo que nos permite calcular radioenlaces de estaciones de radio y televisión. Sin embargo, para comunicaciones móviles es más seguro usar los modelos de Okumura-Hata, debido a que incluyen una serie de parámetros que el modelo del espacio libre no incluye, observados desde los datos experimentales, y son más restrictivos a la hora de realizar el radioenlace.

Los modelos de difracción (Walfisch-Bertoni y Walfisch-Ikegami) no han sido tratados en esta entrada debido a su complejidad formal y a la necesidad de explicar también el fenómeno de la difracción. En esta entrada tampoco se han tratado fenómenos como la interferencia o el ruido, que afectan a la correcta recepción de un radioenlace. Estos modelos y los fenómenos de interferencia y ruido se tratarán en futuras entradas.

REFERENCIAS

  1. John R. Reitz, Frederick J. Milford, Robert W. Christy, “Foundations of Electromagnetic Theory”, Addison-Wesley Publishing Company, Inc., Massachusetts (USA), 1979
  2. José M. Hernando Rábanos, “Comunicaciones Móviles”, C.E. Ramón Areces, S.A., Madrid (Spain), 1997
  3. Y. Okumura, E. Ohmori, T. Kawano, K. Fukuda, “Field strength and its variability in the VHF and UHF land mobile radio service”, Rev. Elec. Commun. Lab., 16(9/10), 825-73. 1968.
  4. M. Hata, “Empirical formula for propagation loss in land mobile radio services”, IEEE Transactions on Vehicular Technology , 29(3), 317-325, 1980.

¿Qué son las Nuevas Tecnologías? El engaño del “mundo cambiante”

Se oye mucho en estos últimos años la frase “el mundo cambia y debes de adaptarte a esos cambios”. Pero, ¿es verdad que el mundo cambia continuamente? Me imagino que lo mismo deberían pensar aquellos legionarios romanos que, viendo las heridas que provocaba el “gladius hispanicus” decidieron adoptarlo como panoplia frente a la espada larga y pesada que llevaban los galos.

Y es que el mundo, en realidad, no es tan cambiante. Al menos, no como se nos quiere hacer creer. El mundo no cambia tanto, es muy estable y aplicaciones que hoy día estamos utilizando fueron descubiertas antes. Lo que se ha avanzado es la forma de aplicarlas y venderlas.
EL PROGRESO TRAJO EL DESCANSO

Hace ya varios años, en Espinosa de Bricia, pueblo de agricultores del que es originaria mi familia, colgaron un brabán y le pusieron esa frase: “El progreso trajo el descanso”. Ese es el objetivo del progreso, que podamos descansar. Pero seguimos haciendo a la hora de sacar los frutos de la tierra lo mismo que hacíamos desde que bajamos del árbol. ¿Es el mundo tan cambiante? La tierra se tiene que seguir arando como antaño, y lo que hemos desarrollado son herramientas para facilitar el trabajo. Pero esas herramientas siguen siendo herramientas. Llamémoslo tecnología, pero no mundo cambiante.

En los últimos años ha habido una tendencia a considerar que el mundo cambia y que no nos adaptamos. ¡Si somos la especie más adaptativa de La Tierra! Nos adaptamos a todo: vivimos en climas boreales y en desérticos, vivimos con 5 horas de luz o con 9 horas, vivimos en lo más recóndito y entramos en donde queramos. ¿Cuál es la razón por la que se publicita que no somos capaces de adaptarnos a los cambios? Somos la especie que mejor se adapta a ello…

Lo que se ha perdido es el horizonte de los cambios: los cambios tienen que servir para prosperar, para mejorar. Sin embargo, hoy en día los cambios y las mejoras tecnológicas, si hacemos un balance, sólo nos aportan un 20% de lo que nos cuestan. ¿Por qué? Porque nos hemos olvidado que el brabán mejoró al antiguo arado romano sólo para que los que extraían sus beneficios de la tierra pudiesen tener más tiempo libre.

LA TECNOLOGÍA COMO MOTOR DE DESARROLLO DEL SER HUMANO

La tecnología debe ser un motor de desarrollo del ser humano, en su afán de buscar la felicidad. Sin embargo, se ha convertido en un afán de obtener dinero rápido. Y eso ha llevado a la obsolescencia programada, de la que ya hemos hablado en otro comentario.

Hace poco le preguntaba a mi sobrina: “¿Por qué quieres un teléfono smartphone?”, siendo la respuesta “Porque lo tienen mis amigos”. Bajo esa premisa incontestable (si lo tienen mis amigos, ¿no lo puedo tener yo?) uno proporciona un equipo que está en exceso sobrado para las necesidades reales de la persona que lo recibe. El brabán era necesario para tener tiempo libre, pero ¿es necesario tener una cosechadora si sólo tienes una huerta?

La tecnología desarrolla al ser humano, pero hay que acotar las necesidades reales para que éstas nunca superen a nuestros deseos. Los deseos son otra cosa.