Archivo de la etiqueta: divulgación científica

La simulación multifísica en la moderna ingeniería

La ingeniería moderna ha avanzado mucho, y por ello requiere de herramientas potentes y de métodos analíticos fiables. En la entrada sobre simulación usando el método de los elementos finitos (FEM), analizamos cómo se podían resolver problemas electromagnéticos tridimensionales a través de métodos matemáticos matriciales que resolvían la ecuación de Helmholtz en estructuras complejas. Pero los métodos resolutivos de cálculo estructural han avanzado mucho en estos últimos años, hasta el punto en que hoy día una buena labor de ingeniería no se entiende sin acudir a estas potentes herramientas de computación. Una labor importante de la Física en los últimos años ha sido el poder elaborar modelos físicos que puedan ser evaluados por diferentes métodos de computación, y a través de ellos, resolver problemas. Pero mientras antes sólo se podían resolver problemas puntuales o muy aproximados, en la actualidad y con los medios de computación modernos, se pueden acoplar diferentes formas de fenómenos físicos y lograr resultados espectaculares, impensables hace 20 años.

Como ya sabéis todos, mi mundo dentro de la Física ha sido la simulación. Por este motivo, soy especialista en modelado. Durante años me he dedicado a ello y ya hice una entrada por este motivo. Como en otras entradas he dicho, la Física es la ciencia de la medida: nos dedicamos a medir y a corroborar leyes, y a elaborar modelos que nos permitan calcular con más fiabilidad los fenómenos físicos que antes teníamos que hacer en una pizarra grande, ecuación tras ecuación, hasta llegar al resultado. Así resolvía los problemas de Termodinámica uno de los profesores que tuve en la Facultad de Ciencias, empezando a llenar de cálculos la pizarra desde la esquina superior de la izquierda hasta la esquina inferior de la derecha.

No era posible evaluar complejas ecuaciones integro-diferenciales en esos momentos, salvo por métodos numéricos. La llegada del computador y la creación del lenguaje de programación de alto nivel FORTRAN (que es el acrónimo de FOrmula TRAslation) creado por IBM en 1953 permitió a los físicos, matemáticos e ingenieros disponer de una potente herramienta para poder resolver problemas matemáticos complejos a través de la programación. Con él se podían realizar programas numéricamente intensivos y resolver ecuaciones integro-diferenciales. En el caso de la electrónica, el primer programa de simulación realizado en FORTRAN fue SPICE (Simulation Program with Integrated Circuits Emphasis), que ha llegado a ser tan popular que tiene multitud de programas basados en este primer simulador de Berkeley.

La simulación ha ido avanzando a medida que se generaban más modelos, Estos modelos empezaban a necesitar potentes máquinas para calcular, pero se centraban solamente en su problema concreto. Así, un simulador de transferencia de calor sólo resolvía su física correspondiente. O un simulador electromagnético, las ecuaciones de Maxwell. Y un simulador climático, sólo tenía en cuenta su física manteniendo las variables de entrada fijas y sin que otra física las modificase o perturbase. Así que una vez verificados que los modelos físicos funcionaban y que permitían estimaciones, el siguiente paso fue acoplarlos, puesto que las leyes físicas no actúan de forma aislada, sino que interactúan entre ellas, y no es posible entender un problema físico sin que haya otro que le esté modificando, sobre todo, en los sistemas caóticos. Gracias a esta interacción de los problemas físicos, los modelos se superponen y se puede establecer una correlación entre ambos. De vital importancia son los métodos usados para resolver las complejas ecuaciones integro-diferenciales, que en estructuras sencillas, son relativamente fáciles de resolver, pero que al final se tornan complejas cuando la estructura lo es también. Y ahí es donde trabajan los diferentes métodos de resolución.

MÉTODOS DE RESOLUCIÓN DE ECUACIONES COMPLEJAS

Existen varios métodos de resolución de ecuaciones complejas en estructuras complejas. Los más utilizados son, sin duda, el método de los momentos (MoM), el método de los elementos finitos (FEM), el método de los contornos (BEM) y el método de las diferencias finitas en el dominio del tiempo (FDTD). Los más populares son el FEM y el FDTD, aunque todos se basan en lo mismo: tomar una estructura, dividirla en elementos finitos de tipo tetraédrico o hexaédrico, y considerando que las soluciones tienen que ser continuas en los vértices de los elementos, generar un sistema matricial para resolver el problema.

Por tanto, el punto de partida es el mallado, o la generación de la malla que definirá a la geometría. Normalmente conocida como mesh en su palabra original inglesa, la estructura debe ser dividida en diferentes elementos, triangulares o cuadráticos cuando la estructura es bidimensional, y tetraédricos o hexaédricos cuando es tridimensional.

En la figura siguiente se puede ver un ejemplo de mallado de una estructura bidimensional que consta de tres rectángulos y dos círculos. La fiabilidad en los resultados residirá en la calidad del mallado, por tanto, antes de ponerse a simular estructuras, hay que estudiar la malla donde se resolverán las ecuaciones.

Mallado de una estructura bidimensional

Fig. 1 Mallado de una estructura bidimensional

Una estructura tridimensional será más compleja. Recordando la entrada anterior, donde se simulaba un ortomodo, veíamos que la malla se torna en 3 dimensiones.

Fig. 2 Malla en una estructura analizada por elementos finitos

Con la malla ya elegida y optimizada, el siguiente paso es elegir el método de resolución.

MÉTODO DE LOS ELEMENTOS FINITOS

El método más popular es el método de los elementos finitos (FEM). Con este método resolvemos las ecuaciones diferenciales que definen una determinada física en un dominio Ω, rodeado por un contorno Γ, como se puede ver en la figura 3. El dominio es mallado mediante triángulos (3-a) y las ecuaciones se resuelven en los vértices del triángulo (3-b)

Fig. 3 Triangulización del dominio y elemento finito

Este problema se resuelve a través de un análisis matricial en el que suponemos que en cada vértice de los triángulos del mallado la solución es lineal, del tipo

u_i \left( x_i, y_i \right) = a + b \cdot x_i + c \cdot y_i

Por tanto se trata de encontrar los coeficientes a, b y c de esa solución lineal. Si usamos notación matricial, entonces tenemos que la solución en cada elemento es

\begin{pmatrix} u_1 \\ u_2 \\ u_3 \end{pmatrix} = \begin{bmatrix} 1 & x_1 & y_1 \\ 1 & x_2 & y_2 \\ 1 & x_3 & y_3 \end{bmatrix} \cdot \begin{pmatrix} a \\ b \\ c \end{pmatrix}

y de este modo podemos extraer la solución global u a través de

u = \begin{pmatrix} 1 & x & y \end{pmatrix}  {\begin{bmatrix} 1 & x_1 & y_1 \\ 1 & x_2 & y_2 \\ 1 & x_3 & y_3 \end{bmatrix}}^{-1} \cdot \begin{pmatrix} u_1 \\ u_2 \\ u_3 \end{pmatrix} 

Una vez tenemos todos los elementos, se realiza un ensamblado de las matrices y de este modo se obtiene la solución final.

Fig. 4 Ensamblado de elementos

ANÁLISIS DE UN PIEZOELÉCTRICO POR EL MÉTODO DE LOS ELEMENTOS FINITOS

En el ejemplo que vamos a estudiar en esta ocasión, analizaremos un cristal piezoeléctrico similar al que analizamos en la entrada Estudio del comportamiento de un material piezoeléctrico (II). En aquella entrada usamos el modelo de Mason para estudiar el comportamiento eléctrico y relacionarlo con el mecánico, mediante un simulador de circuitos. La solución de la impedancia obtenida para este piezoeléctrico era de la forma

Fig. 5 Impedancia del resonador piezoeléctrico

El piezoeléctrico está formado por varias capas: dos electrodos de Molibdeno, que encierran a un piezoeléctrico de Nitruro de Aluminio. En una de las secciones se añaden 4 capas compuestas de Óxido de Silicio y Tungsteno, que forman un reflector de Bragg para las ondas acústicas. De este modo, los dominios a modelar son los que aparecen en la Fig. 6

Fig. 6 Dominios del piezoeléctrico

Sobre estos dominios se hace un mallado, no sin antes conformar una serie de particularidades en los dominios de izquierda y derecha, que consideraremos dominios adaptados.

Fig. 7 Mallado de los dominios

Sobre éste material vamos a resolver varias físicas. Una de ellas es la Mecánica de Sólidos, en la que se resuelven las siguientes ecuaciones diferenciales

-\rho \cdot \omega^2 \cdot u = \vec \nabla \cdot \vec S

para los materiales elásticos lineales como el Molibdeno, el Óxido de Silicio y el Tungsteno. En el dominio del Nitruro de Aluminio se resuelve misma ecuación, pero se añade el desplazamiento eléctrico a través del Teorema de Gauss

\vec \nabla \cdot \vec D =\rho

ya que el piezoeléctrico está relacionado con el campo eléctrico a través de las ecuaciones constitutivas

T=c^ES-e_{33}E

D=e_{33}S+{\epsilon}^SE

Esta física se resuelve sobre todos los dominios. Para limitar los resultados, a los contornos se les ponen restricciones: a los contornos de izquierda y derecha se les pone la restricción de desplazamiento nulo, mientras que al superior se le pone la condición asociada a la impedancia acústica del aire (415 Rayl) y al inferior la condición asociada a la impedancia acústica del Silicio (8 MRayl).

Esta física se asocia a la física electrostática, pero en este caso sólo se considera el dominio del piezoeléctrico

Fig. 8 Física electrostática sobre el piezoeléctrico

En este caso, se tiene que resolver

D=e_{33}S+{\epsilon}^SE

que es la segunda ecuación constitutiva de los piezoeléctricos. A los contornos superior e inferior les aplicamos una diferencia de potencial, y a los contornos laterales, la condición de carga nula. Y de este modo, ya tenemos modelado el dispositivo.

RESULTADOS DE LA SIMULACIÓN MULTIFÍSICA

Analizando en frecuencia el dispositivo, se obtiene el siguiente resultado

Fig. 9 Impedancia del piezoeléctrico analizada por FEM

y si comparamos con la Fig. 5, la respuesta obtenida es muy similar a la obtenida mediante el modelo de Mason.

Lo bueno que tiene, además, el análisis multifísico de estructuras es que podemos ver cómo se comporta físicamente el dispositivo, analizando el desplazamiento mecánico del piezoeléctrico cuando se aplica una tensión, que en este caso, es del orden de 5.25 nm sobre la estructura inicial

Fig. 10 Desplazamiento mecánico del piezoeléctrico

Esta simulación a través de elementos finitos se muestra virtualmente más potente que la realizada a partir del modelo de Mason, debido a que el material piezoeléctrico siempre tiene una dependencia espacial de forma tensorial. Sin embargo, en términos de impedancia, el modelo de Mason se ajusta bastante al dispositivo a modelar y es válido para analizar, a priori, el comportamiento de un dispositivo más complejo como un filtro de onda acústica (SAW y BAW) y otros dispositivos como micrófonos, sensores o dispositivos de energy harvesting.

CONCLUSIONES

Está claro que la simulación multifísica es una herramienta potente para la ingeniería moderna. El acoplamiento de diversas físicas puede mostrar resultados muy cercanos a la realidad, gracias a los métodos de análisis y a la potencia de computación moderna. Sin embargo, acarrea una dificultad, que es la necesidad de equipos con mucha capacidad de cálculo. En el ejemplo simulado hay 20426 elementos de dominio. Esto significa 20426 triángulos donde hay que ensamblar matrices.

El rango de estas matrices es inferior al del número de elementos, porque en los vértices compartidos tiene que haber continuidad. La calidad del mallado también influirá en el resultado: a mayor mallado, menor serán los errores relativos y más preciso será el cálculo. El inconveniente es la capacidad de computación y la necesidad de memoria, por lo que muchos de estos programas tienen que trabajar en multitarea, compartiendo resolvedores para que la solución sea convergente. También requiere mucho tiempo de computación, por lo que las simulaciones complejas pueden durar varias horas antes de tener un resultado, que puede no ser el apetecido. Sin embargo, es un recurso cada vez más eficaz para resolver problemas complejos. El modelado y la interpretación de resultados, sin embargo, sigue dependiendo de humanos.

REFERENCIAS

  1. Feynman, R; “Simulating Physics with Computers”; International Journal of Theoretical Physics, 1982, Vols. 21, Issue 6-7, pp. 467-488, DOI: 10.1007/BF02650179.
  2. Gibson, Walton C., “The Method of Moments in Electromagnetics”, Segunda Edición, CRC Press, 2014, ISBN: 978-1-4822-3579-1.
  3. Reddy, J.N, “An Introduction to the Finite Element Method”, Segunda Edición,  McGraw-Hill, 1993, ISBN: 0-07-051355-4.
  4. Mason, Warren P., “Electromechanical Transducers and Wave Filters”, Segunda Edición, Van Nostrand Reinhold Inc., 1942, ISBN: 978-0-4420-5164-8.
  5. Dong, S. Shim and Feld, David A., “A General Nonlinear Mason Model of Arbitrary Nonlinearities in a Piezoelectric Film”, IEEE International Ultrasonics Symposium Proceedings, 2010, pp. 295-300.
  6. W.P. Mason, Electromechanical Transducers and Wave Filters”, Princeton NJ, Van Nostrand, 1948
  7. J. F. Rosenbaum, “Bulk Acoustic Wave Theory and Devices”, Artech House, Boston, 1988.
  8. R. Krimholtz, D.A. Leedom, G.L. Mathaei, “New Equivalent Circuit for Elementary Piezoelectric Transducers”, Electron. Lett. 6, pp. 398-399, June 1970.

La importancia de una divulgación seria y contrastada

Ni que decir tiene que la divulgación científica o tecnológica debe de ocupar un lugar importante en nuestra sociedad. Y es tarea de los medios de comunicación ofrecer una información lo más asequible posible a aquellas personas cuya formación técnica no les permite comprender totalmente los hechos descubiertos. Esto, desgraciadamente, no ocurre, buscando un titular sensacionalista y desechando cualquier mínimo rigor en la noticia. En esta entrada vamos a analizar un reciente “paper” publicado en la revista NATURE, cómo lo han tratado los diferentes medios y cómo en realidad tendría que haber sido un análisis riguroso del artículo publicado.

Por mi profesión, tengo que ser consumidor compulsivo de “papers”. Está en mi ADN profesional. Y por ese hecho tengo que estar alerta a las últimas novedades que se puedan dar en el “estado del arte”. Es algo complicado teniendo en cuenta que diariamente se publican cientos de artículos, unos en revistas de impacto y otros en páginas y blogs con menos importancia, además de aquellos que se pueden publicar en revistas y boletines de asociaciones científicas mundiales. El mundo del “paper” científico no es un mundo, precisamente, pequeño.

A veces llegas a un artículo de impacto gracias a los medios de comunicación, gracias a sus secciones técnicas y científicas. Sin embargo, últimamente estas secciones están dejando mucho que desear en cuanto a la presentación del artículo, a su relevancia y a lo más importante, qué representa realmente.

Como mi especialidad es el Electromagnetismo, recientemente he encontrado una serie de noticias con las que, en realidad, no sé qué quedarme. El “paper” en cuestión [1] está escrito por un equipo del MIT (Instituto de Tecnología de Massachusetts, considerado como uno de los centros tecnológicos más prestigiosos del mundo), dirigido por el Prof. Tomás Palacios y en el que han intervenido un nutrido grupo de ingenieros y tecnólogos mundiales.

Este artículo muestra el diseño de una rectena que se puede usar para captar la energía electromagnética presente en la banda de WiFi (2.45 GHz, 5.8 GHz), mediante una antena flexible y un semiconductor de muy bajo perfil. Ante todo, lo que representa el artículo es la posibilidad de hacer antenas flexibles con espesores muy finos, con buena eficiencia, frente a las actuales rectenas usando semiconductores convencionales. En el artículo, los ingenieros han usado un semiconductor basado en el disulfuro de molibdeno (MoS2), un material muy usado en aplicaciones como lubricantes y refinación petrolífera. El hecho de que tenga una banda prohibida entre la banda de conducción y la de valencia hace que este material pueda ser usado en la construcción de dispositivos semiconductores como los diodos.

Sin embargo, el disulfuro de molibdeno tiene una movilidad electrónica baja frente a los semiconductores convencionales de silicio o arseniuro de galio, lo que limita la banda de frecuencias en el que se puede usar. Lo que los autores del “paper” han logrado es llegar a una frecuencia de corte usando este semiconductor como diodo rectificador de 10 GHz. Lo cual es un logro evidente. La cuestión es ¿cómo se trata en los medios este avance?

TITULARES SENSACIONALISTAS EN BUSCA DE CLICS

Pongo sólo dos artículos encontrados en los medios, como referencia, aunque por supuesto tenemos muchos más y casi todos han caído en el mismo sensacionalismo. El artículo de El Mundo [2] titula “Un científico español crea una antena capaz de convertir en electricidad la señal WiFi”. Si bien es cierto que el Prof. Palacios, además de ser español, es el director del equipo multinacional de ingenieros del MIT que han conseguido el logro del que hablaba antes, hay que indicar al redactor de la noticia que todas las antenas, desde que se utilizan, convierten la señal WiFi (o la de radio, o la de TV, es lo mismo) en señal eléctrica PORQUE SON SEÑALES ELÉCTRICAS. No son ectoplasmas, ni algo esotérico que viaja por el aire. Se generan mediante equipos eléctricos y por tanto, son susceptibles de ser captadas por otros equipos eléctricos. Si no, no habría comunicaciones inalámbricas como las que llevamos emitiendo desde que Hertz hiciera su primera transmisión radiada en 1887 (ya ha llovido desde entonces). El titular, que también reproduce Vozpopuli [2] con la misma intención (y casi todos han reproducido lo mismo), demuestra que no se ha hecho una verdadera revisión de estilo y menos se ha consultado éste con expertos en el tema.

El artículo de El Mundo parece que pretende ser una entrevista con el Prof. Palacios. Pasa lo mismo con el de Vozpopuli, aunque dudo mucho que ningún medio español haya acudido al MIT a entrevistar al director de este equipo de tecnólogos. Más bien creo que están usando alguna entrevista realizada al ingeniero y de esa forma desarrollan la noticia. Aunque la proximidad de la publicación del “paper” en Nature (todo se publica el mismo día 28 de enero) me muestra que habrán buscado una publicación americana y habrán traducido con el Google Translate. No sería la primera vez.

En el artículo de El Mundo hay una frase que todavía rechina en mis oídos: “Los ingenieros han conseguido desarrollar una antena que captura las ondas electromagnéticas, incluidas las que se transmiten en una conexión inalámbrica, en forma de corriente alterna”. Habría que decirle al autor que todas las antenas son capaces de capturar las ondas electromagnéticas, INCLUIDAS LAS QUE SE TRANSMITEN EN UNA CONEXIÓN INALÁMBRICA PORQUE SON ONDAS ELECTROMAGNÉTICAS. De hecho, su router inalámbrico tiene antenas, ya sean externas (ésas se ven) o internas (para verlas hay que desmontar el equipo). Pero toda onda electromagnética radiada se capta con antenas, no sólo la WiFi, sino la radio convencional, la TV y las señales de satélite.

Vozpopuli tampoco trata con rigor el “paper”. Iniciando con un “Imagine un mundo en el que los teléfonos móviles, los ordenadores portátiles y el resto de dispositivos se cargaran sin baterías y de manera remota”, cometen un despropósito del tamaño de un camión: si los móviles no tienen baterías… ¿qué vas a cargar? Lo que se cargan son las baterías, la electrónica de un móvil necesita una alimentación de DC para poder funcionar y eso se lo proporciona la batería. Y ya hay cargadores inalámbricos para móviles, usados precisamente para cargar la batería. Lo que pasa es que esos cargadores se basan en acoplamientos inductivos en campo cercano y no en la energía radiada en el espacio libre. Lo coherente hubiese sido decir Imagine un mundo en el que su móvil no tenga batería y se alimente a través de la emisión de radio presente en el espacio. Muy futurista e hiperoptimista (mucho tienen que bajar los consumos de los móviles para poder alimentar con energías tan bajas los dispositivos electrónicos que contienen), pero por lo menos se ajustaría más a lo que es el “paper” publicado.

Otro de los despropósitos de Vozpopuli se da cuando dicen que los dispositivos capaces de convertir ondas electromagnéticas de corriente alterna en electricidad se conocen como “rectennas” y hasta ahora eran rígidas y basadas en materiales demasiado caros para producirlos a gran escala. Que son rígidas, es cierto, pero que están basadas en materiales demasiado caros para producirlos a gran escala es una patraña. La mayor parte de las rectenas que aparecen en los cientos de “papers” publicados mundialmente suelen ser semiconductores de uso general, y bastante más baratos que el tratamiento industrial del disulfuro de molibdeno como semiconductor. De hecho, no hay semiconductores electrónicos en el mercado industrial hechos con disulfuro de molibdeno, por lo que, por ahora, la tecnología desarrollada en el MIT, hasta que no se logre un escalado industrial, es como los coches de Elon Musk: caros, con poca autonomía y con plazos de entrega al cliente de eones.

Pero El Mundo no le anda a la zaga cuando dice que en concreto la antena ha llegado a producir unos 40 microvatios de potencia, expuesta a niveles de potencia típicos de las señales WiFi -en torno a 150 microvatios-, una cantidad que según los autores es más que suficiente para iluminar una pantalla de móvil o activar chips de silicio. Aunque de momento son prudentes, sus creadores esperan que la nueva tecnología se pueda materializar en los próximos años. Sí, 40 μW pueden mantener en modo SLEEP un microprocesador sin consumir la batería del dispositivo móvil, permitiendo que se active cuando se necesita usar (entonces tirará de la corriente de la batería), pero para nada será suficiente cuando se quiera activar el amplificador que tiene que emitir la señal GSM, con un pico de emisión de 4 W. Ahí, los 40 μW son como tratar de subir 1000 veces seguidas el Everest. En este caso, lo más lógico es indicar que se obtiene una eficiencia bastante alta con señales muy bajas, ya que si la señal generada en la antena por el campo radiado por un router WiFi es 150 μW (-8,2 dBm) , la eficiencia es del 27% y eso se logra en las rectenas actuales de silicio y arseniuro de galio.

En fin, el tratamiento dado a la noticia es un cúmulo de incorrecciones que se podrían haber solventado publicando la noticia al día siguiente o incluso con dos días, pero bien publicada y con un lenguaje cercano al profano, pero asesorado por un técnico. Mi lenguaje es demasiado técnico y es labor del periodista traducirlo a un lenguaje entendible por su público, no acostumbrado a temas técnicos.

COMO SE DEBERÍA HABER TRATADO LA NOTICIA

Para tratar la noticia en la justa medida, primero hay que leerse el “paper”, para comprender lo que en realidad se ha logrado. En realidad, el “paper” no presenta sueños etéreos de un futuro en el que las paredes de casa van a ser enormes antenas. Con su lenguaje técnico, muestra una serie de experimentos realizados sobre una rectena hecha en perfiles flexibles, y esto es un logro porque los materiales que se habían usado hasta el momento para hacer rectenas flexibles no llegaban a la frecuencia de corte a la que han llegado los tecnólogos del MIT. Con este logro, se puede captar la señal eléctrica que hay en el ambiente y lograr optimizar el consumo de baterías, de modo que el móvil no quite carga a la batería mientras está en modo SLEEP, y estas rectenas pueden ser integradas en dispositivos móviles en las próximas generaciones.

Obviamente hay que procesar debidamente el MoS2 para conseguir el escalado industrial necesario, ya que antenas en formato flexible se fabrican en la actualidad y hay para todos los gustos: de banda estrecha, de banda ancha, multibanda, etc. Pero aunque en los artículos hablen de que con esta tecnología ya no necesitaremos extraer litio para las baterías, hay que recordar también que el disulfuro de molibdeno es un mineral y hay que extraerlo de la tierra, que no crece en los árboles.

Por supuesto que felicito al Prof. Palacios y a su equipo por el logro conseguido, recordando también que la ciencia no tiene nacionalidad y que no es una competición. Tampoco es bueno tratar estas noticias como si hubiese ganado Nadal un Grand Slam o Alonso las 24 horas de Le Mans. El equipo es multinacional como todo lo que se hace en el mundo investigador: recurres a los mejores, sin importar la nacionalidad, porque sus resultados contribuyen al cuerpo del conocimiento y al estado del arte.

REFERENCIAS

    1. Zhang, Xu et al.,”Two-dimensional MoS2-enabled flexible rectenna for Wi-Fi-band wireless energy harvesting“, Nature, Ene. 28, 2019, DOI: 10.1038/s41586-019-0892-1
    2. Herrero, Amado, “Un científico español crea una antena capaz de convertir en electricidad la señal WiFi“, El Mundo, Ene. 28, 2019
    3. Un ingeniero español crea la primera antena que convierte el WiFi en electricidad“, Vozpopuli, Ene. 28, 2019

El calentamiento por microondas

El horno microondas se ha vuelto muy popular en los últimos años, y se ha convertido en un electrodoméstico imprescindible en cualquier cocina. Sin embargo, el calentamiento por microondas parece un tema esotérico, casi mágico, para muchos que tienen el horno en casa. En esta entrada vamos a adentrarnos en el mundo del calentamiento por microondas, no sólo para el calentamiento de alimentos, sino también para el calentamiento industrial y de ACS (agua caliente sanitaria).

En 1946, un investigador británico de la Raytheon Corporation, Mr. Percy Spencer, trabajando sobre las aplicaciones del RADAR, descubrió que una chocolatina que tenía en el bolsillo se había derretido. Estaba probando un magnetrón comenzó a hacer experimentos, confinando el campo en una cavidad metálica. Primero con maíz y luego con un huevo de gallina. Este último, le estalló.

Comprobó que un campo electromagnético de una intensidad elevada afectaba a los alimentos debido a la presencia de agua en su interior. El agua es un mal propagador de las ondas de radio, debido a su alta constante dieléctrica y a la conductividad dieléctrica que tiene. Al ser la molécula de agua polar, en presencia de un campo variable con el tiempo el dipolo hidrógeno-oxigeno tiende a orientarse en el sentido del campo, y eso hace agitarse a la molécula de agua, por lo que incrementa su temperatura. La creencia popular es que ésto sucede sólo a 2,4 GHz, pero en realidad ocurre en toda la banda de microondas. La frecuencia de 2,4 GHz es utilizada por los hornos debido a que es una frecuencia dentro de la banda de emisión libre conocida como ISM (abreviatura de Industrial, Scientific and Medical). Sin embargo hay procesos de calentamiento a 915MHz y a otras frecuencias.

En primer lugar hay que indicar que el agua (como casi todos los dieléctricos) tiene, en condiciones normales, una constante dieléctrica ε=ε’−jε”. Cuando se introduce esta constante dieléctrica en las ecuaciones de Maxwell aparece una conductividad definida por

\sigma = \omega \epsilon" \epsilon_0

Esta conductividad no es producida por la movilidad de electrones, sino por la movilidad de las moléculas polares del agua. Por tanto, es mayor a medida que aumentamos la frecuencia.

Por otro lado, la presencia de esta conductividad limita la penetración de las microondas en el agua, ya que van atenuándose con la distancia. Está relacionado con el término de profundidad de penetración expresado por

\delta_p=\dfrac {\lambda \sqrt{\epsilon'}}{2 \pi \epsilon"}

y por tanto a mayor frecuencia menor profundidad de penetración. Si la intensidad del campo eléctrico aplicado es |E|, por la ley de Ohm, la potencia por unidad de volumen que proporciona el campo se puede obtener por

Q=\omega \epsilon" \epsilon_0 |E|^2

Esta potencia afectará a una zona volumétrica concreta del agua, provocando calentamiento.

Por otro lado, hay un efecto de transmisión del calor que está regido por la conductividad térmica, de tal manera que el flujo de calor por unidad de superficie es

\dfrac {dQ_s}{dt}=-k \displaystyle \int_s {\vec \nabla T d \vec S}

Aplicando el teorema de la divergencia, la variación de calor por unidad de volumen será

\dfrac {dQ_V}{dt}=-k \nabla^2 T

Este flujo de calor tiende a distribuir la temperatura dentro del elemento volumétrico y por eso su signo negativo.

EL CALENTAMIENTO DEL AGUA

En condiciones macroscópicas, la cantidad de energía que hay que aplicar, por unidad de volumen, al agua para que incremente su temperatura viene dada por la expresión

E_v=\rho_m c_e \Delta T

con ρM la densidad del agua y ce su calor específico, siendo ΔT el incremento de temperatura. Si hablamos en términos de potencia, tendremos que

Q=\rho_m c_e \dfrac{dT}{dt}

donde hay que calcular la derivada de la temperatura con respecto al tiempo, y al tratarse de un fluido que puede estar en movimiento, hay que aplicar la derivada sustancial que vimos en la entrada sobre la magnetohidrodinámica.

\dfrac{dT}{dt}=\dfrac{\partial T}{\partial t}+\vec v \vec \nabla T

Así, aplicando la derivada sustancial tendremos que

Q=\rho_m c_e \left(\dfrac{\partial T}{\partial t}+\vec v \vec \nabla T \right)-k\nabla^2 T

que es la expresión que rige el mecanismo de calentamiento del agua cuando se aplica una densidad volumétrica de potencia electromagnética Q.

Por otro lado, no debemos olvidar que el movimiento de un fluido está regido por la ecuación de Navier-Stokes, a través de

\rho_M \dfrac {\partial \vec v}{\partial t}=-\vec \nabla P+\mu \nabla^2 \vec v + \rho_M \vec g

donde P es la presión, μ la viscosidad del fluido y g el campo gravitatorio.

SISTEMAS DE ACS POR MICROONDAS

En el caso de un sistema de agua caliente sanitaria, habría dos posibilidades de calentamiento:

  1. Mediante un circuito cerrado que mueva un flujo de agua, que es además un fluido con una viscosidad muy baja (10-3 Pa·s).
  2. Mediante un contenedor que contenga agua que no esté en movimiento y acumule el calor para transmitirlo a otras direcciones.

En el primer caso, la cantidad de potencia volumétrica necesaria para calentar un circuito cerrado debe de resolver tanto la ecuación del incremento térmico como la de Navier-Stokes, y ésta es mayor que en el segundo caso, donde la expresión del incremento térmico queda

Q+k\nabla^2 T=\rho_m c_e \dfrac{\partial T}{\partial t}

Estas ecuaciones se pueden resolver usando el método de diferencias finitas que ya comentamos en la entrada referente a la simulación.

En todo caso, aunque ambos métodos son posibles, el primer método siempre será más económico que el segundo, ya que el segundo sólo se puede aplicar a elevar la temperatura de otro fluido en movimiento y necesitará más energía debido a las pérdidas debidas a esa transferencia de calor.

¿ES POSIBLE CALENTAR OTROS MATERIALES USANDO MICROONDAS?

En principio, cualquier material que tenga pérdidas por constante dieléctrica puede ser susceptible de ser calentado usando microondas, si éstas pérdidas no elevan la conductividad eléctrica a valores que anulen el campo eléctrico (en un conductor perfecto, el campo eléctrico es nulo). Si escribimos la expresión obtenida en términos de campo eléctrico tenemos que

\omega \epsilon" \epsilon_0 |E|^2+k\nabla^2 T=\rho_m c_e \left(\dfrac{\partial T}{\partial t}+\vec v \vec \nabla T \right)

y por tanto, podremos obtener una relación entre ε” y el incremento de temperatura a un campo |E| dado.

INFLUENCIA EN LOS HUMANOS

El cuerpo humano es otro dieléctrico, formado en su mayor parte por agua. Por tanto, el efecto de una radiación electromagnética en nuestro cuerpo debería provocar calentamiento. Vamos a estudiar cuál sería el campo que incrementaría nuestra temperatura por encima de 50o C en un minuto, reduciendo la expresión a los siguientes términos

\omega \epsilon" \epsilon_0 |E|^2=\rho_m c_e \dfrac{\Delta T}{\Delta t}

Si tomamos ε”=4,5 (la del agua a 2,4 GHz), sabiendo que la densidad media humana es 1100 kg/m3 y su calor específico es de 14,23 kJ/kg o C, tendremos que

|E|=\sqrt {\dfrac {1100 \cdot 14230 \cdot \left(\dfrac{50-33}{60} \right)}{2 \pi \cdot 2,4 \cdot 10^9 \cdot 4,5 \cdot 8,85 \cdot 10^{-12}}}=3,1 kV/m

y un router WIFI radia con una intensidad de campo, a 1 m. del mismo, de menos de 2 V/m. Por tanto, un router WIFI no provocará calentamiento en tu cuerpo ni aunque te pongas pegado a él.

¿Y qué decir de un teléfono móvil? Estos aparatos son ya potentes… Pues en su pico de emisión tampoco, ya que como mucho tendrás 12 V/m, y se necesitan 3100 V/m, unas 260 veces más. Así que el móvil tampoco te calienta la oreja. Y teniendo en cuenta la profundidad de penetración, como mucho la radiación electromagnética llega a penetrar unos 2 cm, atenuándose la intensidad de campo a la mitad y la potencia a la cuarta parte, por efecto de la conductividad dieléctrica de nuestro cuerpo. Eso sin tener en cuenta que cada uno de nuestros tejidos tiene una capacidad de atenuación diferente en función de su composición y estructura.

CONCLUSIÓN

En esta entrada se trata de explicar el fenómeno del calentamiento a base de microondas a partir de los fenómenos que producen ese calentamiento, y sus posibles aplicaciones industriales, aparte de las ya conocidas como el popular horno que casi toda cocina ya tiene como parte de su mobiliario electrodoméstico. Una de las aplicaciones más inmediatas está en el ACS, aunque también se han logrado aplicaciones en otros apartados industriales. Y a pesar de que las microondas producen ese calentamiento, las intensidades de campo necesarias están muy alejadas de la radiación que recibimos de las comunicaciones móviles.

REFERENCIAS

  1. Menéndez, J.A., Moreno, A.H. “Aplicaciones industriales del calentamiento con energía microondas”. Latacunga, Ecuador: Editorial Universidad Técnica de Cotopaxi, 2017, Primera Edición, pp 315. ISBN: 978-9978395-34-9
  2. D. Salvi, Dorin Boldor, J. Ortego, G. M. Aita & C. M. Sabliov “Numerical Modeling of Continuous Flow Microwave Heating: A Critical Comparison of COMSOL and ANSYS”, Journal of Microwave Power and Electromagnetic Energy, 2016, 44:4, 187-197, DOI: 10.1080/08327823.2010.11689787

¿Hacen su labor los medios respecto a la forma de tratar los conocimientos científicos?

trudeauDejando un poco aparte (al menos, hasta el próximo mes) la divulgación técnica pura, recientemente me he encontrado con una noticia en varios medios que me ha parecido, cuanto menos, sorprendente. No porque el Primer Ministro canadiense sepa bastante de Mecánica Cuántica, ya que podría estar sorprendido en el caso de que conociese su trayectoria académica y en ésta no describa si ha estudiado o no sobre el tema, sino por el grado de desconocimiento que algunos periodistas tienen de las personas a las que están preguntando, que pueden provocar patinazos (o como se dice en el argot de Twitter, “zascas en toda la boca”) como el del que se han hecho eco nuestros medios. Por este motivo, me he lanzado a escribir una entrada de opinión sobre el tema, retomando de algún modo uno de los apartados que quise siempre para este blog, que fuese también un lugar de divulgación para todos los públicos y no sólo para los muy técnicos. Con ese compromiso retomo desde hoy la inclusión de entradas no exclusivamente técnicas, que estén relacionadas, como siempre, con el mundo científico y tecnológico y sus avances.

LA ACTITUD DE POLÍTICOS Y PERIODISTAS FRENTE A LOS CONOCIMIENTOS CIENTÍFICOS

Recientemente, la prensa vulgarmente llamada “seria” se ha hecho eco de un hecho que, parece ser, consideran “anormal”: que un Primer Ministro, además de tener ese cargo, dé una clase magistral de Computación Cuántica a un periodista que quiso pasarse de listo, cuando requirió a Justin Trudeau que le explicase algo sobre dicho tema. Ni corto ni perezoso, el mandatario canadiense no sólo le contestó sino que le dio una clase magistral de 35 segundos a un periodista que creyó que ésta era la suya.

Vivimos unos tiempos en los que parece que el pensamiento crítico más elemental ha desaparecido de algunos despachos oficiales y algunas líneas editoriales, y que se juzga más a la gente por un tuit equivocado que por una larga trayectoria, sin que se haga el más mínimo esfuerzo en conocer a quién te diriges cuando le preguntas. Algo que debería ser elemental para cualquier profesional de los medios de comunicación: si quieres saber cómo te va a contestar y si te va a contestar a una pregunta, primero estudia la trayectoria del interrogado, para que sepas hacerle la pregunta.

Parece ser que a los medios les sorprende que Justin Trudeau sepa de Computación Cuántica porque muchos de los lectores eso les suena a chino mandarín, también en parte gracias a la pésima labor de divulgación de algunos medios escritos, que suelen equiparar ciencia con pseudociencia, como si ambas estuviesen en el mismo nivel, alegando esa excusa de que todo el mundo tiene derecho a que se les proporcione información. Lo que pasa es que se les suele olvidar el adjetivo milagroso: veraz.

Cierto es que muchos políticos carecen de conocimientos científicos, y algunos hasta adolecen del más elemental conocimiento acerca de lo que significa el mundo científico y sus avances, usándolo sólo los mismos cuando se trata de hacerse una foto frente a un científico famoso cuando ha ganado algún premio. Un caso paradigmático fue el del Dr. D. Severo Ochoa: cuando ganó el premio Nobel, el régimen imperante en España se acordó de él y le quiso repatriar con promesas de inversiones y laboratorios, cuando unos años antes ese mismo régimen no le concedía ni el pasaporte para poder salir de la Alemania nazi. Muchos políticos adolecen de esa falta, pero también es cierto que otros tienen cultura científica, sin que la prensa les preste atención cuando opinan de algo que no sea la pura palestra política.

¿DE QUÉ NOS EXTRAÑAMOS SI HEMOS TENIDO POLÍTICOS CON DOS TITULACIONES Y HASTA LAS EJERCÍAN?

boyer1-aEsta prensa que hoy está jaleando a Trudeau, convirtiendo en noticia algo que no debería serlo tanto, es la misma prensa que obvió o que no concedió interés a un artículo de Miguel Boyer Salvador, ex-Ministro de Economía del primer gabinete de Felipe González, en el que el recientemente fallecido economista hacía una disertación acerca del dilema que supondría si los resultados obtenidos en el proyecto OPERA en 2011 (neutrinos viajando a una velocidad más alta que la de la luz) se verificaban. En su etapa más joven, Miguel Boyer, Licenciado en Ciencias Económicas y Ciencias Físicas, también opinaba sobre temas científicos y sobre la filosofía de la ciencia. No era, pues, un político inculto científicamente pues de cuando en cuando, el ex-Ministro de Economía se dejaba caer por Universidades de Verano siendo participante o ponente de cursillos que no eran ni estrictamente políticos ni económicos.

Aunque este artículo se hubiese publicado después de la clase magistral de Trudeau, los periodistas hubiesen seguido sin prestarle atención, puesto que el titular era que hay un político que no es inculto y que sabe de Mecánica Cuántica, como si hubiesen probado la existencia de los unicornios, en lugar de haber estudiado antes la biografía de Justin Trudeau y su brillante trayectoria académica, en la que se destaca, aparte de su Licenciatura en Educación, sus estudios de ingeniería en la Politécnica de la Universidad de Montreal y su Maestría en Geografía Medioambiental en la Universidad McGill, lo que viene a mostrar a un hombre que se preocupa por formarse cuando quiere dotarse de una opinión contrastada. Desgraciadamente, aquellos políticos que adolecen de esa falta de rigor, tratando con desdén los conocimientos científicos y a las personas que los generan, tapan la brillantez de otros políticos que sí que se preocupan de su autoformación. Estos últimos los hay, existen, pero no son tan noticia para una prensa que un día publica el descubrimiento del Bosón de Higgs y al día siguiente, en el mismo apartado de Ciencia, una disertación sobre los peligros de las ondas electromagnéticas no ionizantes, si bien es cierto que la camada de políticos más brillantes de la reciente Historia de España se ha dado, precisamente, en la Transición. Hoy en día, muchos políticos lo son de carrera, ascendiendo dentro del propio partido sin haber tenido experiencia previa en otro sitio diferente.

Sin embargo, con el perfil de estos políticos también aparece el perfil del periodista que desdeña la labor de proporcionar esa información veraz. Porque la información tiene que ser eso, veraz, ya que la prensa de hoy día será la fuente de la Historia de mañana, como los autores clásicos del mundo romano nos permiten conocer cómo era su tiempo y sus costumbres.

No se puede tampoco meter en este saco a todos los periodistas, puesto que los hay muy brillantes dentro de esta profesión. Pero sí hay que indicar que la tendencia a vivir a ritmo de tuit en lugar de hacer la pesada y ardua labor de documentarse previamente está causando, en mi opinión, estragos entre lo que debería ser la diferencua entre una información veraz y puro rumo, cotilleo o “chisme”.

Hoy en día, el  mundo científico español y, sobre todo, nuestros científicos están sufriendo, por un lado, la apatía de quienes gobiernan actualmente nuestro país, cuyo rigor a la hora de tratar este conocimiento es poco menos que nulo, despreciando un modelo productivo basado en el valor añadido del conocimiento, y basándose en el agotado modelo del yo te lo hago más barato, condenando con esa política por un lado, a limitar el crecimiento de nuestro país, y por otro, a la mal llamada movilidad laboral de nuestros científicos, obligados a tener que coger las maletas y ejercer su profesión en centros de investigación y laboratorios de otros países, donde este conocimiento no es desdeñado sino que se ve como una oportunidad.

Y ésa debería ser la labor de la prensa llamada “seria”: centrar la importancia en el conocimiento científico y evitar el recurso fácil de reproducir titulares facilones para atraer más público, así como dejar de situar al mismo nivel este conocimiento y la falta de evidencia de las pseudociencias. Porque el hecho de que haya políticos incultos científicamente no convierte a los que publican noticias en expertos en ciencia. Dentro del mundo periodístico hay incultos científicamente como los hay en casi todas las profesiones no relacionadas con éste ámbito. Así que espero que el “zasca” a este periodista retome un poco la deontología de que cualquier entrevista, editorial o titular debe de estar tan rigurosamente documentada en fuentes como lo está un artículo sobre la Física de Plasmas.

REFERENCIAS

  1. Boyer Salvador, M.,”Dilema radical en la física: “Einstein, ¿sí o no?”“,El País, 6/10/2011
  2. Boyer Salvador, M.,”Popper y los nuevos filósofos de la ciencia“, El País, 7/11/1984
  3. Delgado, J.,”Boyer defiende la libertad como valor absoluto en el seminario sobre Popper“, El País, 31/07/1991
  4. Justin Trudeau, Wikipedia
  5. Justin Trudeau, Liberal Party Website
  6. Miguel Boyer Salvador, Wikipedia

 

Análisis estadísticos usando el método de Monte Carlo (II)

Art02_fig01En la anterior entrada mostramos con una serie de ejemplos simples cómo funciona el método de Monte Carlo para realizar análisis estadísticos. En esta entrada vamos a profundizar un poco más, haciendo un análisis estadístico más profundo sobre un sistema algo más complejo, analizando una serie de variables de salida y estudiando sus resultados desde una serie de ópticas que resultarán bastante útiles. La ventaja que tiene la simulación es que podemos realizar una generación aleatoria de variables, y además, podemos establecer una correlación de esas variables para conseguir distintos efectos al analizar el funcionamiento de un sistema. Así, cualquier sistema no sólo se puede analizar estadísticamente mediante una generación aleatoria de entradas, sino que podemos vincular esa generación aleatoria a análisis de lotes o fallos en la producción, así como su recuperación post-producción.

Los circuitos que vimos en la anterior entrada eran circuitos muy sencillos que permitían ver cómo funciona la asignación de variables aleatorias y el resultado obtenido cuando estas variables aleatorias forman parte de un sistema más complejo. Con este análisis, podíamos comprobar un funcionamiento y hasta proponer correcciones que, por sí solas, limitasen las variaciones estadísticas del sistema final.

En este caso, vamos a estudiar el efecto dispersivo que tienen las tolerancias sobre uno de los circuitos más difíciles de conseguir su funcionamiento de forma estable: el filtro electrónico. Partiremos de un filtro electrónico de tipo paso banda, sintonizado a una determinada frecuencia y con una anchura de banda de paso y rechazo determinadas, y realizaremos varios análisis estadísticos sobre el mismo, para comprobar su respuesta cuando se somete a las tolerancias de los componentes.

DISEÑO DEL FILTRO PASO BANDA

Vamos a plantear el diseño de un filtro paso banda, centrado a una frecuencia de 37,5MHz, con un ancho de banda de 7MHz para unas pérdidas de retorno mayores que 14dB, y un ancho de banda de rechazo de 19MHz, con atenuación mayor de 20dB. Calculando el filtro, se obtienen 3 secciones, con el siguiente esquema

Filtro paso banda de tres secciones

Filtro paso banda de tres secciones

Con los valores de componentes calculados, se buscan valores estándar que puedan hacer la función de transferencia de este filtro, cuya respuesta es

Respuesta en frecuencia del filtro paso banda

Respuesta en frecuencia del filtro paso banda

donde podemos ver que la frecuencia central es 37,5MHz, que las pérdidas de retorno están por debajo de 14dB en ±3,5MHz de la frecuencia central y que el ancho de banda de rechazo es de 18,8MHz, con 8,5MHz a la izquierda de la frecuencia central y 10,3MHz a la derecha de la frecuencia central.

Bien, ya tenemos diseñado nuestro filtro, y ahora vamos a hacer un primer análisis estadístico, considerando que las tolerancias de los condensadores son ±5%, y que las inducciones son ajustables. Además, no vamos a indicar correlación en ninguna variable, pudiendo tomar cada variable un valor aleatorio independiente de la otra.

ANÁLISIS ESTADÍSTICO DEL FILTRO SIN CORRELACIÓN ENTRE VARIABLES

Como vimos en la entrada anterior, cuando tenemos variables aleatorias vamos a tener dispersión en la salida, así que lo óptimo es poner unos límites según los cuales podremos considerar el filtro válido, y a partir de ahí analizar cuál es su respuesta. Para ello se recurre al análisis YIELD, que es un análisis que, usando el algoritmo de Monte Carlo, nos permite comprobar el rendimiento o efectividad de nuestro diseño. Para realizar este análisis hay que incluir las especificaciones según las cuales se puede dar el filtro por válido. Las especificaciones elegidas son unas pérdidas de retorno superiores a 13,5dB entre 35÷40MHz, con una reducción de 2MHz en la anchura de banda, y una atenuación mayor de 20dB por debajo de 29MHz y por encima de 48MHz. Haciendo el análisis estadístico obtenemos

Análisis estadístico del filtro. Variables sin correlación.

Análisis estadístico del filtro. Variables sin correlación.

que, sinceramente, es un desastre: sólo el 60% de los posibles filtros generados por variables con un ±5% de tolerancia podrían considerarse filtros válidos. El resto no serían considerados como válidos en un control de calidad, lo que significaría un 40% de material defectivo que se devolvería al proceso de producción.

De la gráfica se puede ver, además, que son las pérdidas de retorno las principales responsables de que exista tan bajo rendimiento. ¿Qué podemos hacer para mejorar este valor? En este caso, tenemos cuatro variables aleatorias. Sin embargo, dos de ellas son del mismo valor (15pF), que cuando son montadas en un proceso productivo, suelen pertenecer al mismo lote de fabricación. Si estas variables no presentan ninguna correlación, las variables pueden tomar valores completamente dispares. Cuando las variables no presentan correlación, tendremos la siguiente gráfica

Condensadores C1 y C3 sin correlación

Condensadores C1 y C3 sin correlación

Sin embargo, cuando se están montando componentes de un mismo lote de fabricación, las tolerancias que presentan los componentes varían siempre hacia el mismo sitio, por tanto hay correlación entre dichas variables.

ANÁLISIS ESTADÍSTICO DEL FILTRO CON CORRELACIÓN ENTRE VARIABLES

Cuando usamos la correlación entre variables, estamos reduciendo el entorno de variación. En este caso, lo que analizamos no es un proceso totalmente aleatorio, sino lotes de fabricación en los cuales se producen las variaciones. En este caso, hemos establecido la correlación entre las variables C1 y C3, que son del mismo valor nominal y que pertenecen la mismo lote de fabricación, por lo que ahora tendremos

Condensadores C1 y C3 con correlación

Condensadores C1 y C3 con correlación

donde podemos ver que la tendencia a la variación en cada lote es la misma. Estableciendo entonces la correlación entre ambas variables, estudiamos el rendimiento efectivo de nuestro filtro y obtenemos

Análisis estadístico con C1, C2 variables correladas

Análisis estadístico con C1, C2 variables correladas

que parece todavía más desastroso. Pero ¿es así? Tenemos que tener en cuenta que la correlación entre variables nos ha permitido analizar lotes completos de fabricación, mientras que en el análisis anterior no se podía discernir los lotes. Por tanto, lo que aquí hemos obtenido son 26 procesos de fabricación completos exitosos, frente al caso anterior que no permitía discernir nada. Por tanto, esto lo que nos muestra es que de 50 procesos completos de fabricación, obtendríamos que 26 procesos serían exitosos.

Sin embargo, 24 procesos completos tendrían que ser devueltos a la producción con todo el lote. Lo que sigue siendo, realmente, un desastre y el Director de Producción estaría echando humo. Pero vamos a darle una alegría y a justificar lo que ha intentado siempre que no exista: el ajuste post-producción.

ANÁLISIS ESTADÍSTICO CON AJUSTE POST-PRODUCCIÓN

Como ya he dicho, a estas alturas el Director de Producción está pensando en descuartizarte poco a poco, sin embargo, queda un as en la manga, recordando que las inducciones las hemos puesto de modo que sean ajustables. ¿Tendrá esto éxito? Para ello hacemos un nuevo análisis, dando valores variables en un entorno de ±10% sobre los valores nominales, y activamos el proceso de ajuste post-producción en el análisis y ¡voilà! Aun teniendo un defectivo antes del ajuste muy elevado, logramos recuperar el 96% de los filtros dentro de los valores que se habían elegido como válidos

Análisis estadístico con ajuste post-producción

Análisis estadístico con ajuste post-producción

Bueno, hemos ganado que el Director de Producción no nos corte en cachitos, ya que el proceso nos está indicando que podemos recuperar la práctica totalidad de los lotes, eso sí, con el ajuste, por lo que con este análisis podemos mostrar no sólo el defectivo sino la capacidad de recuperación del mismo.

Podemos representar cómo han variado las inducciones (en este caso las correspondientes a las resonancias en serie) para poder analizar cuál es la sensibilidad del circuito frente a las variaciones más críticas. Este análisis permite establecer un patrón de ajuste para reducir el tiempo en el que se debe de tener un filtro exitoso.

Análisis de los patrones de ajuste en las inducciones de las resonancias serie

Análisis de los patrones de ajuste en las inducciones de las resonancias serie

Así, con este tipo de análisis, realizado en el mismo momento del diseño, es posible tomar decisiones que fijen los patrones posteriores de la fabricación de los equipos y sistemas, pudiendo establecer patrones fijos de ajuste post-producción sencillos al conocer de antemano la respuesta estadística del filtro diseñado. Una cosa muy clara que he tenido siempre, es que cuando no he hecho este análisis, el resultado es tan desastroso como muestra la estadística, así que mi recomendación como diseñador es dedicarle tiempo a aprender cómo funciona y hacerle antes de que le digas a Producción que tu diseño está acabado.

CONCLUSIONES

En esta entrada hemos querido mostrar un paso más en las posibilidades del análisis estadístico usando Monte Carlo, avanzando en las posibilidades que muestra el método a la hora de hacer estudios estadísticos. El algoritmo nos proporciona resultados y nos permite fijar condicionantes para realizar diversos análisis y poder optimizar más si se puede cualquier sistema. Hemos acudido hasta a un ajuste post-producción, a fin de calmar la ira de nuestro Director de Producción, que ya estaba echando humo con el defectivo que le estábamos proporcionando. En la siguiente entrada, abundaremos un poco más en el método con otro ejemplo que nos permita ver más posibilidades en el algoritmo.

REFERENCIAS

  1. Castillo Ron, Enrique, “Introducción a la Estadística Aplicada”, Santander, NORAY, 1978, ISBN 84-300-0021-6.
  2. Peña Sánchez de Rivera, Daniel, “Fundamentos de Estadística”, Madrid,  Alianza Editorial, 2001, ISBN 84-206-8696-4.
  3. Kroese, Dirk P., y otros, “Why the Monte Carlo method is so important today”, 2014, WIREs Comp Stat, Vol. 6, págs. 386-392, DOI: 10.1002/wics.1314.

 

¡Feliz cumpleaños, Teoría Electromagnética!

maxwell-finHace 150 años, en 1865, el escocés James C. Maxwell publicó “A Dynamical Theory of the Electrodynamic Field”, una Teoría que marcó un hito en el naciente mundo de la Física Moderna, ya que estableció las bases para la unificación de dos campos que, hasta ese momento, se trataban de forma independiente: el Campo Eléctrico y el Campo Magnético. Con esta unificación, Maxwell puso las bases para comprender el comportamiento de los fenómenos electromagnéticos y su propagación, siendo la base hoy día del funcionamiento de nuestras comunicaciones. Desde esta entrada, queremos dar a conocer estas ecuaciones, su significado y su importancia, y rendir homenaje a uno de los científicos más importantes de los últimos tiempos.

No es una casualidad que este año los Físicos celebremos el Año Internacional de la Luz, puesto que fue hace 150 años cuando un físico escocés publicó las bases para la Teoría Electromagnética, marcando un antes y un después en el conocimiento de los fenómenos eléctricos y magnéticos y logrando la primera unificación en una sola Teoría de dos campos que, hasta ese momento, eran tratados de formas diferentes: el Campo Eléctrico y el Campo Magnético.

Hasta este momento, se conocían ciertas interrelaciones entre ambos fenómenos. Conocíamos, a través de la Electrostática, la Ley de Coulomb y el Teorema de Gauss, que el campo eléctrico era generado por cargas que interaccionaban entre ellas, y a través de la Ley de Biot-Savart y la Ley de Ampère, que los campos magnéticos eran generados por corrientes (cargas en movimiento) y que generaban interacciones entre ellos, a través de la fuerza de Lorenz. Sin embargo, todas las leyes y axiomas de los campos de los campos Eléctrico y Magnético se trataban como algo independiente, no había una unificación que mostrase de forma contundente las interrelaciones hasta que Maxwell las unificó.

Al principio se trataba de una veintena de ecuaciones integro-diferenciales, aunque en realidad se podían reducir a las ecuaciones actuales, debido a que Maxwell las escribió para cada eje de coordenadas. Usando el operador diferencial diferencial ∇ y las interrelaciones matemáticas entre las integrales y dicho operador, al final las ecuaciones quedaron descritas tal y como se conocen hoy, tanto en su forma integro-diferencial como en su más popular descripción diferencial vectorial.

Ecuaciones de Maxwell y sus leyes

Ecuaciones de Maxwell y sus leyes

Este conjunto de cuatro ecuaciones establecen la unificación de los campos Eléctrico y Magnético en una nueva Teoría que se llama la Teoría Electromagnética, la primera gran unificación de campos realizada en la Física y una de las más bellas descripciones que existen en la disciplina.

No vamos a ir desgranando una a una las ecuaciones, ya que en varias ocasiones lo hemos hecho en otras entradas, pero uno de los detalles más evidentes que se sacan de las ecuaciones, y que las hace interesantes, es su asimetría. Esta asimetría, debida precisamente a la diferencia entre el comportamiento de ambos campos, se hace patente dos a dos: en la Ley de Gauss de ambos campos, y entre la Ley de Faraday y la de Ampère.

Asimetría de la Ley de Gauss

La Ley de Gauss o Teorema de la Divergencia está relacionada con las fuentes y sumideros de las líneas de fuerza del campo, y muestra hacia dónde divergen estas líneas de interacción. En el caso del campo eléctrico, las líneas divergen hacia las cargas, que son las fuentes o sumideros de las líneas de campo. Gráficamente se puede expresar como

350px-LineasCampo

Divergencia de las líneas de capo eléctrico a las cargas

Por tanto, las líneas del campo eléctrico nacen y mueren en las cargas.

En el caso del campo magnético podemos observar que la divergencia es nula, esto es, no hay fuentes o sumideros a los cuales las líneas de campo magnético diverjan. Por tanto, no existen los monopolos magnéticos. El campo magnético rota sobre el origen del mismo, que lo establece la Ley de Ampère y que son las corrientes ocasionadas por cargas en movimiento. Y su expresión más gráfica es

Campo magnético rotando alrededor de una línea de corriente

Campo magnético rotando alrededor de una línea de corriente

Esta asimetría muestra que ambos campos son diferentes en su origen, lo que se muestra muy claramente cuando los campos son estáticos. No obstante, la no dependencia temporal de estas ecuaciones las hace válidas no sólo para los campos estáticos, sino también para los campos dinámicos. Es la otra asimetría, la de las leyes de Faraday y Ampère, la que introduce, además, el dominio temporal.

Asimetría de las Ley de Faraday y Ampère

Las leyes del campo están relacionadas con los campos dinámicos, aquellos que varían de forma temporal. La primera dice que la variación de un flujo magnético con el tiempo genera una fuerza electromotriz, o llanamente, que la variación de un campo magnético genera un campo eléctrico. Es el principio de las dinamos y los generadores eléctricos, en los que, al variar el flujo de un campo magnético mediante medios mecánicos, son capaces de generar un campo eléctrico.

En la Ley de Faraday también está presente la Ley de Lenz, que indica que ese campo eléctrico tiende a oponerse a la variación del campo magnético, y por eso el signo negativo en la expresión.

La segunda, la Ley de Ampère, parte de la ley de la magnetostática, que dice que la circulación de un campo magnético a través de una línea cerrada es proporcional a la corriente que encierra ese contorno. Esta Ley de la Magnetostática fue generalizada por Maxwell al introducir los campos eléctricos variables con el tiempo, mostrando un resultado que, en su forma diferencial, guarda similitud con la Ley de Faraday, salvo que introduce la densidad de corriente para que se mantenga coherente con la Ley de Ampère de la Magnetostática. La conclusión, por tanto, es que los campos eléctricos variables con el tiempo generan campos magnéticos y los campos magnéticos variables con el tiempo, eléctricos.

A pesar de la asimetría de las expresiones, que es la que genera, bajo mi punto de vista, la belleza de la descripción del escocés, de ellas se deduce una de las conclusiones más importantes de la Teoría Electromagnética, y es que los campos electromagnéticos son ondas que se propagan en cualquier medio material dieléctrico, no necesitando de soportes físicos, a diferencia de otros tipos de ondas como las acústicas, que presentan características similares en la formulación de los campos asociados. Esta conclusión es la que nos permite asociar fenómenos como la propagación luz, que presenta una dualidad partícula-onda ya que es un campo electromagnético formado por partículas llamadas fotones. Y al poder propagarse en el vacío, puede transmitir de un lugar a otro la información, que en el caso de la luz, es la visión de un fenómeno que haya ocurrido en el Universo a través de su observación.

Los campos electromagnéticos como ondas que se propagan en el espacio

De resolver las ecuaciones, se puede llegar a las ecuaciones de onda de Helmholz, tanto para el campos eléctrico como para el magnético.

{\nabla}^2\vec{E}-{\mu_0}{\epsilon_0}\dfrac{\partial^2 \vec{E}}{\partial t^2}-{\mu_0}{\sigma}\dfrac{\partial \vec{E}}{\partial t}=0

{\nabla}^2\vec{B}-{\mu_0}{\epsilon_0}\dfrac{\partial^2 \vec{B}}{\partial t^2}-{\mu_0}{\sigma}\dfrac{\partial \vec{B}}{\partial t}=0

En estas ecuaciones la asimetría que presentan las ecuaciones de Maxwell desaparece, y se pueden resolver como una onda propagándose por un medio material, incluido el vacío, en el que la velocidad de propagación es la velocidad de la luz, c, siendo ésta la máxima velocidad a la que se puede propagar la onda.

Resolviendo esta ecuación de onda, obtendremos la forma en la que se propaga un campo electromagnético en el medio, como una onda compuesta por un campo eléctrico y un campo magnético variables con el tiempo.

El campo electromagnético como onda de propagación

El campo electromagnético como onda de propagación

donde en azul tenemos el campo eléctrico, en rojo el campo magnético y en negro la dirección de propagación de la onda.

Influencia de la Teoría Electromagnética en nuestras vidas

Es evidente que la Teoría Electromagnética de Maxwell ha tenido una influencia notable en nuestras vidas, afectando en muchos aspectos, pero donde más influencia ha tenido es en la comunicación. Los seres humanos necesitamos comunicarnos, y la Teoría Electromagnética de Maxwell nos abre las puertas a un campo en el que las comunicaciones casi no tienen límites. Las comunicaciones modernas no se podrían entender sin esta notable contribución del escocés, y este año no celebraríamos el Año Internacional de la Luz si no hubiese existido todavía esta unificación de campos. Hoy día la Teoría Electromagnética forma parte habitual de nuestras vidas y costumbres, a través de las comunicaciones a larga distancia, ya sean inalámbricas, por cable o por fibra óptica. Recibimos imagen y sonido gracias a ella, así como podemos comunicarnos a larga distancia gracias a la transmisión por radio y enviar datos a cualquier parte del mundo. Es una de las cuatro interacciones de la naturaleza, junto a la gravedad y a las interacciones fuerte y débil del mundo atómico, y por tanto, por ese motivo podemos decir con orgullo ¡Feliz cumpleaños, Ecuaciones de Maxwell!

Referencias

  1. John R. Reitz, Frederick J. Milford, Robert W. Christy, “Foundations of Electromagnetic Theory”, Addison-Wesley Publishing Company, Inc., Massachusetts (USA), 1979

Influencia de los campos electromagnéticos en la dinámica de los fluidos

la_caza_del_submarino_rusoAunque parezca lo contrario, en esta entrada no vamos a hablar de novelas de espías, pero sí vamos a usar un argumento de la trama de una conocida novela de espionaje para presentar la teoría magnetohidrodinámica. Ésta es una disciplina de la física, que forma parte de la teoría de campos y analiza el movimiento de fluidos con carga eléctrica en presencia de un campo electromagnético y sus posibles aplicaciones. Comprendiendo los principios de la dinámica de fluidos, llegaremos a las ecuaciones que constituyen la base de la teoría, sus conclusiones y su actual utilización.

Los que conozcan la trama de la novela de Tom Clancy “The hunt of Red October”, sabrán que trata sobre la deserción de un submarino soviético de la clase Typhoon, dotado de un sistema de propulsión silencioso y difícilmente detectable por el sonar. En la novela, se le describe como “propulsión magnetohidrodinámica” y consiste en generar flujo de corriente hidráulica a lo largo de la nave usando campos magnéticos. Este flujo permite su desplazamiento sin usar los motores convencionales, aprovechando las características conductivas del agua salada. Este sistema de propulsión silenciosa convertía a la nave en algo letal y peligroso de verdad, puesto que podría acercarse a la costa de los EE.UU. sin ser detectado y lanzar un ataque con cabezas nucleares sin que nadie lo pudiese evitar. Esta es la trama, pero, ¿cuánto hay de cierto en la misma? ¿Existe un método de propulsión o un sistema que provoque el movimiento de un fluido por la presencia de un campo electromagnético? ¿Y a la inversa? ¿Podemos generar un campo electromagnético sólo usando el movimiento de un fluido cargado?

Aunque pueda parecer que, al tratarse de una novela de espías y acostumbrados como estamos a la tendencia de la ficción a crear ciertas bases argumentales, a veces ilusorias, para dotar de cierto dramatismo a la trama, lo cierto es que la teoría magnetohidrodinámica es muy real. Tanto, que el primer efecto destacable de la misma lo podemos comprobar simplemente con la presencia del campo magnético terrestre. Este es fruto del movimiento del núcleo interno de la tierra, compuesto de una capa de hierro líquido (fluido) que envuelve a una gran masa de hierro sólido. Este núcleo , que se mueve acompasado por la rotación de la Tierra, tiene cargas en movimiento que generan una corriente eléctrica, y esa corriente eléctrica genera el campo magnético que protege a la Tierra de los embates de partículas de alta energía que proceden de nuestra estrella, el Sol.

El propio Sol, que es una nube de gas en estado de plasma, tiene poderosos campos magnéticos que determinan el movimiento de las partículas que constituyen el plasma en su interior. Por tanto, la teoría magnetohidrodinámica que usa Clancy en esa trama es muy real. Vamos entonces a desvelar sus bases.

DINÁMICA DE FLUIDOS: LAS ECUACIONES DE NAVIER–STOKES

Un fluido es un medio material continuo formado por moléculas donde sólo hay fuerzas de atracción débil, que se encuentra en uno de estos tres estados de la materia: líquido, gaseoso o plasma. La dinámica de fluidos es la parte de la física que se ocupa del estudio del movimiento de estos medios en cualquiera de estos estados, siendo la masa del fluido la parte que se desplaza de un punto a otro.

Del mismo modo que en campos electromagnéticos definíamos la corriente eléctrica como la variación de la carga con el tiempo, en los fluidos hablaremos de un flujo de corriente ψ que es la variación de la masa M del fluido respecto del tiempo.

{\psi}=\dfrac{dM}{dt}=\dfrac{d}{dt} \displaystyle \int_V {\rho}_M dV

Si tomamos una superficie donde hay ni partículas de masa mi que se mueven a una velocidad vi, podemos definir una densidad de flujo de corriente ℑM, que se expresa como

{\vec{\mathcal J}}_M=\displaystyle \sum_i N_i  m_i  {\vec {v}}_i=N  m  {\vec {v}}=M  {\vec {v}}

d{\psi}=\left( \displaystyle \sum_i N_i  m_i  {\vec {v}}_i \right) \vec{n} dA={\vec{\mathcal J}}_M  \vec{n}  dA

Flujo de corriente debida a partículas de masa m

Flujo de corriente debida a partículas de masa m

Vamos a considerar, como se muestra en la figura, que nuestro fluido es un medio material que tiene todas las partículas de la misma masa, por lo que el producto ni⋅mi se puede extraer del sumatorio, quedando entonces una velocidad v  que es la suma vectorial de todas las velocidades de las partículas del fluido.

La relación entre el flujo de corriente y la densidad de flujo de corriente es una integral a lo largo de una superficie S. Si integramos el flujo de corriente total en una superficie cerrada, por la conservación de la masa, tendremos que es igual  es la variación de la masa con respecto al tiempo, y siendo la densidad la masa por unidad de volumen, podemos escribir que

{\psi}=- \displaystyle \oint_S {\vec{\mathcal J}}_M \vec{n}  dA =\displaystyle \int_V \dfrac {d{\rho}_M}{dt} dV

Como este flujo de corriente se opone a la variación de la masa respecto del tiempo, y la masa es la integral de volumen de la densidad del fluido ρMy aplicando el teorema de la divergencia, podemos escribir esta expresión en su forma diferencial

-\vec{\nabla} \vec{J}_M = \dfrac {d{\rho}_M}{dt}

que es la ecuación de continuidad de un fluido y que representa la conservación de la masa neta dentro del fluido. Esta es una de las ecuaciones de Navier-Stokes, primordial para comprender el movimiento de las partículas del fluido.

Para la otra ecuación, debemos de recurrir a la derivada sustancial. Esta es una descripción que incluye no sólo la variación con respecto al tiempo de la magnitud física del fluido, sino que además incluye la variación de la misma respecto de la posición. La expresión de la derivada sustancial es

\dfrac {d}{dt}(*)=\dfrac {\partial}{\partial t}(*)+\vec{v} \vec{\nabla}(*)

donde v es la velocidad del fluido y  el operador diferencial que ya vimos en la entrada sobre radioenlaces. Como el momento lineal del fluido se conserva, cuando interviene la fuerza de la gravedad , actúa además una presión P en sentido contrario al movimiento en el fluido y contraponiéndose a las deformaciones una viscosidad μobtenemos que

{\rho}_M  \dfrac {d \vec{v}}{dt}=\vec{F}-\vec{\nabla}P+{\mu} \left( \dfrac {1}{3} \vec{\nabla}  \left(\vec{\nabla}  \vec{v} \right) + {\nabla}^2 \vec{v} \right)

\dfrac {\partial \vec{v}}{\partial t}+ \left( \vec{v} \vec{\nabla} \right) \vec{v} + \dfrac {1}{{\rho}_M} \vec{\nabla}P- \dfrac {\mu}{{\rho}_M}\left( \dfrac {1}{3} \vec{\nabla} \left(\vec{\nabla} \vec{v} \right) + {\nabla}^2 \vec{v} \right)=\vec{g}

Esta es la ecuación del movimiento de un fluido, y es no lineal debido a la derivada sustancial. Por tanto, en un fluido intervienen no sólo las fuerzas aplicadas en el fluido, sino también la presión de éste y su viscosidad. Si el fluido no presentase viscosidad, y aplicando la derivada sustancial  a la ecuación anterior, podemos obtener un caso particular

\dfrac {\partial \vec{v}}{\partial t}+ \left( \vec{v} \cdot \vec{\nabla} \right) \vec{v} + \dfrac {1}{{\rho}_M} \vec{\nabla}P=\vec{g}

que nos define la ecuación del movimiento de un fluido no viscoso.

DINÁMICA DE FLUIDOS: MAGNETOHIDRODINÁMICA

Si el fluido presenta partículas cargadas y aplicamos un campo electromagnético, con componentes E y B, la fuerza que interviene en este caso no es la gravedad, sino la fuerza de Lorenz que aplica el campo magnético

\vec{F}=\vec{J} \times \vec{B}=\dfrac {\left( \vec{B} \cdot \vec{\nabla} \right) \vec{B}}{{\mu}_0}-\vec{\nabla} \left(\dfrac {B^2}{2{\mu}_0} \right)

donde J es la densidad de corriente eléctrica en el fluido y B el campo magnético aplicado. En la expresión desarrollada, obtenida a partir del desarrollo de la Ley de Ampere y una de las identidades del operador diferencial , obtenemos dos términos. El primero es una fuerza de tensión magnética mientras que el segundo término se asemeja a una presión magnética producida por la densidad de energía magnética del campo. Sustituyendo F en la expresión obtenida en el apartado anterior y considerando un fluido no viscoso, tendremos que

\dfrac {\partial \vec{v}}{\partial t}+ \left( \vec{v} \cdot \vec{\nabla} \right) \vec{v} + \dfrac {1}{{\rho}_M} \vec{\nabla} \left(P+\dfrac {B^2}{2{\mu}_0} \right)=\dfrac {\left( \vec{B} \cdot \vec{\nabla} \right) \vec{B}}{{\rho}_M {\mu}_0}

Teniendo en cuenta que, según las ecuaciones de Maxwell, la divergencia del campo magnético es nula, si consideramos un campo magnético unidireccional, las variaciones espaciales de la divergencia son perpendiculares al campo, por lo que la fuerza de tensión magnética se anula y la expresión anterior queda

\dfrac {\partial \vec{v}}{\partial t}+ \left( \vec{v} \cdot \vec{\nabla} \right) \vec{v} + \dfrac {1}{{\rho}_M} \vec{\nabla} \left(P+\dfrac {B^2}{2{\mu}_0} \right)=0

Si el fluido está en estado de plasma, tenemos que la Ley de Ohm se puede escribir como

\vec{E}+\vec{v} \times \vec{B}=0

debido a que en este estado la conductividad tiende a ser infinita y para mantener el flujo de corriente, la fuerza aplicada debe ser lo más baja posile. De este modo, la Ley de Faraday queda como

\dfrac {\partial \vec{B}}{\partial t}=\vec{\nabla} \times \left( \vec{\nabla} \times \vec{B} \right)

CONCLUSIONES DE LAS ECUACIONES

Como hemos podido comprobar, la magnetohidrodinámica es, en realidad, una consecuencia de aplicar campos electromagnéticos a fluidos que poseen carga eléctrica, y en esto se basaba Clancy para “propulsar” su Octubre Rojo. No obstante, los intentos de generar un propulsor naval de estas características se han quedado en prototipos construidos en los años 60 puesto que las inducciones magnéticas que requerían eran elevadas (del orden de más de 5 Tesla) en compartimientos muy voluminosos (centenares de m3). Por tanto, el submarino de la clase Typhoon cumplía con las exigencias de proporcionar el debido dramatismo a la novela, sin despreciar por ello la base científica en la que se basaba, debido al tamaño de este tipo de naves, considerados por los EE.UU. como colosos de las profundidades debido al desplazamiento de toneladas que eran capaces de propulsar.

No quiere decir que la aplicación de la magnetohidrodinámica esté actualmente aparcada. Debido a ella, los astrofísicos han logrado generar modelos basados en estas ecuaciones para determinar las trayectorias de las partículas en el Sol y predecir erupciones solares. Y los geofísicos, comprender mejor la estructura de los núcleos de los planetas.

Además, estas técnicas son utilizadas desde hace años también en metalurgia: a medida que calentamos un metal transformándolo en un fluido, incrementamos notablemente su conductividad, de modo que se puede aplicar la Ley de Ohm para los plasmas. Esto evita, en los procesos de fundición y generación de aleaciones, que el metal entre en contacto con el crisol y adquiera escoria, mejorando notablemente la calidad de la aleación. Es el principio de los altos hornos eléctricos, que vinieron a sustituir a los antiguos que usaban carbón.

También se han encontrado aplicaciones para generar energía eléctrica a partir del movimiento de un gas en presencia de un ampo magnético, así como el confinamiento del estado de plasma para los reactores de energía nuclear de fusión. Por no hablar de los experimentos realizados en el LCH, en Suiza. No obstante, se sigue teniendo el problema de la gran inducción magnética generada y el volumen necesario para mantener los plasmas.

Sin embargo, es una pequeña parte de todo lo que se podría llegar a conseguir con mejor tecnología. A medida que se desarrolle ésta, la magnetohidrodinámica proporcionará mejores aplicaciones.

References

  1. J. R. Reitz, F. J. Milford, R. W. Christy, “Foundations of the Electromagnetic Theory”; Addison-Wesley Publishing Company, Inc, Massachusetts (U.S.A.), 1979
  2. H. Alfvén, “Existence of electromagnetic-hydrodynamic waves“. Nature 150: 405-406, 1942

 

 

Estudio del comportamiento de un material piezoeléctrico (II)

En la entrada anterior habíamos estudiado el fenómeno piezoeléctrico a partir de las ecuaciones constitutivas que relacionan los campos eléctricos y mecánicos generados en el material. Los materiales piezoeléctricos se utilizan, gracias a este comportamiento, como componentes electrónicos con muy alta calidad. Su uso en filtros SAW, en resonadores BAW, en cristales de Cuarzo, para zumbadores e incluso como cargadores en Energy Harvesting hacen necesario, cada vez más, tener un modelo de circuito equivalente que defina correctamente el componente y su respuesta electroacústica. En esta entrada vamos a presentar un modelo, extraído en los años 40-50 por W.P. Mason y que sintetiza con bastante precisión los fenómenos electroacústicos tanto en su modelo lineal como no lineal.

MODELO DE MASON: EXTRACCIÓN

piezoelectrico

Esquema de un piezoeléctrico

Hemos dicho que un piezoeléctrico es un material electromecánico en el que aparecen fuerzas mecánicas cuando se le aplican fuerzas eléctricas y, recíprocamente, eléctricas cuando se aplican fuerzas mecánicas. La figura muestra un esquema dimensional de un material piezoeléctrico.

En el piezoeléctrico aplicamos un potencial eléctrico E⋅δz, y en ambas superficies del piezoeléctrico aparecen sendas tensiones T1 y T2, en cada una de las superficies del material. Aparecen también las velocidades de desplazamiento v1 y v2, que están relacionadas con el desplazamiento u a través de

v=\dfrac {\partial u}{\partial t}

Por último, aparece una corriente eléctrica I en los electrodos del potencial eléctrico. Por último, las magnitudes de A y d son la superficie en m2 y el espesor del dieléctrico en m.

En la entrada anterior estudiamos el comportamiento piezoeléctrico a partir de sus ecuaciones constitutivas. Recordando entonces cómo se escribían estas ecuaciones, teníamos

T=c^ES-e_{33}E

D=e_{33}S+{\epsilon}^SE

Se tiene que cumplir, además, la conservación de la energía a través de la ecuación de Lipmann

{\left[ \dfrac {\partial D}{\partial S} \right]}_E=-{\left[ \dfrac {\partial T}{\partial E} \right]}_S

Combinando adecuadamente estas ecuaciones, habíamos obtenido una ecuación de onda definida por

\left(\rho \dfrac {{\partial}^2}{\partial t^2} -c^D \dfrac {{\partial}^2}{\partial z^2} \right)u=0

que corresponde a una onda de propagación.

Utilizando la expresión que liga v con la variación temporal de u, podemos escribir la 2ª Ley de Newton como

\dfrac {\partial}{\partial z}(-T)=-\rho \dfrac {\partial v}{\partial t}

Recordando, además, que la deformación S derivaba del gradiente de u, calculamos la variación de S con respecto al tiempo y obtenemos su relación con el gradiente de v. Expresándolo para un sistema unidimensional en el eje z, obtenemos

\dfrac {\partial S}{\partial t}=\dfrac {{\partial}^2 u}{\partial z \partial t}=\dfrac {\partial v}{\partial z}

y despejando S de las ecuaciones constitutivas, obtenemos

\dfrac {\partial v}{\partial z}=-\dfrac {1}{c^D}\dfrac {\partial}{\partial t} \left( -T-\dfrac {e_{33}}{{\epsilon}^S}D \right)

Escalamos ahora las ecuaciones, multiplicando por A  los términos de ambas ecuaciones, y agrupándolas, obtenemos

\dfrac {\partial}{\partial z}(-A \cdot T)=-\rho \dfrac {\partial A \cdot v}{\partial t}

\dfrac {\partial A \cdot v}{\partial z}=-\dfrac {1}{c^D}\dfrac {\partial}{\partial t} \left( -A \cdot T\right)-\dfrac {1}{c^D}\left( -\dfrac {e_{33}}{{\epsilon}^S}A \cdot D \right)

Si comparamos este resultado con las ecuaciones del Telegrafista que define una línea de transmisión para las ondas electromagnéticas, podemos comprobar que son similares. La primera relaciona la variación espacial de la tensión -A·T con la variación temporal de la corriente A·v, y correspondería a una inducción por unidad de longitud similar a la de un elemento diferencial de una línea de transmisión.

En la segunda ecuación, que relaciona la variación espacial de la corriente A·v, con respecto a una variación temporal de una tensión, representa una capacidad por unidad de longitud similar a la de la línea de transmisión. Sin embargo, en el segundo término de la ecuación, tenemos una dependencia con la tensión -A·T, que sería una línea de transmisión convencional, y otra dependencia con el desplazamiento eléctrico D. Esa dependencia se representa mediante una línea de transmisión flotante como la que se muestra en la figura siguiente.

linea_t

Modelo acústico del piezoeléctrico, en línea de transmisión, a partir de las ecuaciones del Telegrafista

De este modo ya tenemos asemejada la parte acústica a una línea de transmisión definida por los campos que actúan en las ecuaciones constitutivas.

Sin embargo, esta línea no está del todo completa, ya que hay que incluir el efecto de los electrodos, aislando los campos acústicos de los campos eléctricos. El término que relaciona la variación espacial de A·v con el desplazamiento D puede ser acoplado a través de un transformador ideal N:1, como se muestra en la figura

Acoplamiento de la parte acústica y la eléctrica mediante un transformador N:1

Acoplamiento de la parte acústica y la eléctrica mediante un transformador N:1

y la relación de N se puede calcular por

N=-\dfrac {e_{33}}{d}A

Vamos ahora a estudiar la corriente I. Esta corriente se produce cuando se aplica una tensión E⋅δz en los electrodos del piezoeléctrico. Al aplicar esa tensión, generamos una polarización P, debido al carácter dieléctrico del material. Del mismo modo, sabemos que la corriente I es una variación de la carga Q, y que sólo se producía variación de la carga superficial σ del piezoeléctrico, y que ésta es debida a la polarización P, no variando la carga volumétrica, por lo que

I=\dfrac {\partial Q}{\partial t}=A \dfrac {\partial \sigma}{\partial t}=A \dfrac {\partial P}{\partial t}

y como a la polarización P se opone el desplazamiento eléctrico D para mantener el campo electrico E, obtenemos que

I=-A \dfrac {\partial D}{\partial t}

Estudiamos ahora el potencial E⋅δz aplicado en los electrodos. Usando las ecuaciones constitutivas, obtenemos que el potencial es

{\delta}V=E \cdot {\delta}z=-\dfrac {1}{{\epsilon}^S} \left( {e_{33}S-D} \right) \cdot {\delta}z

Derivando esta expresión con respecto al tiempo, obtenemos

\dfrac {\partial ({\delta}V)}{\partial t}=-\dfrac {1}{{\epsilon}^S} \left( {e_{33} \dfrac {\partial S}{\partial t}-\dfrac {\partial D}{\partial t}} \right) \cdot {\delta}z-\dfrac {1}{{\epsilon}^S} \left( {e_{33} \dfrac {\partial v}{\partial z}-\dfrac {I}{A}} \right) \cdot {\delta}z=\dfrac {\partial ({\delta}V_1)}{\partial t}+\dfrac {\partial ({\delta}V_2)}{\partial t}

Estudiemos ahora los términos en δV1 y  δV2. En el término en δV1 podemos obtener la expresión

I=-\dfrac {{\epsilon}^S A}{{\delta}z} \dfrac {\partial ({\delta}V_2)}{\partial t}=-C_o \dfrac {\partial ({\delta}V_2)}{\partial t}

y es la corriente que fluye a través de un condensador de valor CO , en paralelo con la tensión aplicada. Mientras, el término en δV2 se puede relacionar con la corriente que circula en la parte acústica a través de transformador, siendo Iprim la corriente que circula por el devanado primario del transformador. Usando las relaciones del transformador, podemos encontrar la relación de dicha corriente con esta tensión a través de

-\dfrac {{\delta}z}{e_{33}} \dfrac {\partial \left( I_{prim} \right)}{\partial z}=-\dfrac {{\epsilon}^S A}{e_{33}{\delta}z} \dfrac {\partial ({\delta}V_2)}{\partial t}

I_{prim}=- \left( -\dfrac {{\epsilon}^S A}{{\delta}z} \right) \dfrac {\partial ({\delta}V_2)}{\partial t}=-(-C_o) \dfrac {\partial ({\delta}V_2)}{\partial t}

Tenemos que hacer la consideración de que el peso de la tensión δV1>>δV2 , ya que al calcular la relación de transformación en el transformador hemos supuesto que es E⋅δz=δV, por lo que δV1δVδV20. De este modo, la corriente del primario es una corriente que circula a través de una capacidad negativa de valor CO.

Usando estos parámetros, deducidos de las ecuaciones constitutivas, es posible hacer un modelo completo del circuito equivalente de un piezoeléctrico, que se puede ver en la figura siguiente

mason_model

Circuito equivalente de Mason de un piezoeléctrico

CONDICIONES DE CONTORNO

Cualquier medio material está dentro de otros medios materiales (aire, agua, substratos semiconductores, metales, etc), y todos los medios materiales propagan ondas acústicas. Por tanto, así como en electromagnetismo definimos una impedancia de carga eléctrica sobre la que se transfiere la energía entregada desde el generador eléctrico, podemos definir una resistencia de carga acústica, que es donde se transfiere la energía acústica de la deformación. Esta resistencia de carga acústica está relacionada con la impedancia acústica del medio, y se transforma en una resistencia eléctrica a través de la expresión

R_L=Z_0 A= \rho v^DA

Por ejemplo, el aire tiene una impedancia acústica de 471 Rayls, así que para un piezoeléctrico AlN, con una superficie de 10.000μm2, si ambas superficies estuviesen en contacto con el aire, las impedancias de carga a conectar en los puertos A·T1 y A·T2 serían iguales y valdrían 4,71μΩ, lo que vendría a ser como colocar un cortocircuito en ambos puertos.

En el caso de que uno de los medios fuese aire y el otro, silicio, el silicio tiene una impedancia acústica de 8,35·105 Rayls, en el puerto del silicio habría que poner 8,35mΩ.

Hay que notar que, aunque la impedancia obtenida sea baja. no es estrictamente un cortocircuito. De hecho, al aire, que es el que más baja impedancia presenta, es al que consideramos un cortocircuito, mientras que el resto de materiales presentan impedancias acústicas más elevadas.

También es posible que tengamos un material compuesto de varios espesores de materiales, siendo uno de ellos piezoeléctrico, mientras que los demás son conductores o aislantes. Cuando esto ocurre, cada material puede ser representado por una línea de transmisión de igual modo que el piezoeléctrico. Por ejemplo, si el piezoeléctrico está encapsulado entre dos materiales diferentes, como el wolframio (W) y el molibdeno (Mo), y el wolframio está en contacto con el aire y el molibdeno con silicio, habría que añadir sendas líneas de transmisión entre las cargas y el piezoeléctrico, como se muestra en la figura siguiente

piezo_total

 

NO LINEALIDAD EN LOS MATERIALES: EL MODELO NO LINEAL DE MASON

En las condiciones de trabajo habituales de los piezoeléctricos, el funcionamiento debe de ser lineal. Sin embargo, los materiales presentan limitaciones que hay que tener en cuenta a la hora de trabajar con tensiones elevadas. Estas no linealidades introducen frecuencias espurias que reducen la calidad de la señal. Si estamos usando estos materiales en filtros de recepción, las no linealidades pueden representar un problema cuando una señal interferente de valor elevado atraviesa el material.

El piezoeléctrico es un resonador de muy alto factor de calidad. Traducido a parámetros discretos, se comporta como el circuito de la figura

Resonador equivalente de un piezoeléctrico

Resonador equivalente de un piezoeléctrico

La impedancia del resonador se puede representar en función de la frecuencia, obteniendo una gráfica similar a

impedancia

Impedancia del resonador en función de la frecuencia

El modelo, para bajos potenciales eléctricos, responderá correctamente de forma lineal. Sin embargo, a medida que aumentamos el valor del potencial eléctrico aplicado, empiezan a aparecer condiciones no lineales que limitarán su uso. Estas condiciones no lineales afectan, sobre todo, a las distorsiones de 2º y 3er orden, que son las que pueden afectar en mayor medida sobre la señal útil.

Una forma muy efectiva de simular no linealidades en circuitos eléctricos es el uso de las series de Volterra, una variante de los polinomios de Taylor en el que la respuesta depende en todo momento de los valores de los parámetros de entrada, incluyendo efectos de “memoria”, mediante acumulación de energía, de las capacidades e inducciones.

Como en las series de Taylor, las series de Volterra pueden ser truncadas en aquellos ordenes que sean superiores al que se considera dominante, por lo que nuestro modelo, considerando dominantes sobre todo el 2º y 3er orden de distorsión, puede truncarse a partir del 4º orden .

La distorsión afectará tanto al campo eléctrico como a la tensión mecánica. Las ecuaciones constitutivas, incluyendo estos efectos no lineales, quedarán descritas como

T=c^ES-e_{33}E+{\Delta}T

D=e_{33}S+{\epsilon}^SE+{\Delta}D

siendo ΔT un polinomio de 3er orden que se expresa mediante la suma de 2 términos ΔT2T3, donde el subíndice indica que el polinomio es de 2º o de 3er orden. El caso de ΔD es similar.

Los polinomios que ΔT2, ΔT3, ΔD2 yΔD3 se muestran a continuación:

{\Delta}T_2=\dfrac {1}{2}{\delta}_3 c^E S^2-{\delta}_1 e_{33} S E +\dfrac {1}{2}{\delta}_2 {\epsilon}^S E^2

{\Delta}T_3=\dfrac {1}{3}{\gamma}_4 c^E S^3-{\gamma}_1 e_{33} S^2 E+{\gamma}_2 {\epsilon}^S S E^2 +\dfrac {1}{3}{\gamma}_2 \dfrac {{\epsilon}^S e_{33}}{c^E} E^3

{\Delta}D_2=\dfrac {1}{2}{\delta}_1 e_{33} S^2-{\delta}_2 {\epsilon}^S S E +\dfrac {1}{2}{\delta}_4 \dfrac {{\epsilon}^S e_{33}}{c^E} E^2

{\Delta}D_3=\dfrac {1}{3}{\gamma}_1 e_{33} S^3-{\gamma}_2 {\epsilon}^S S^2 E-{\gamma}_3 \dfrac {{\epsilon}^S e_{33}}{c^E} S E^2 +\dfrac {1}{3}{\gamma}_5 \dfrac {({\epsilon}^S)^2}{c^E} E^3

y además, se sigue teniendo que cumplir la ecuación de Lipmann para la conservación de la energía.

Las series que definen el modelo no lineal se pueden introducir en el modelo lineal de Mason a través de fuentes de tensión dependientes, tanto en la zona eléctrica como en la zona acústica. A dichas fuentes las denominamos VC y TC y están situadas, dentro del modelo, en la entrada eléctrica (caso de VC) y en línea común de la corriente de secundario (caso de  TC), tal y como se muestra en la figura.

Modelo de Mason con las fuentes no lineales

Modelo de Mason con las fuentes no lineales

Estas fuentes se derivan de las ecuaciones constitutivas del mismo modo que hemos derivado el modelo lineal, y se obtienen sus expresiones, que son

T_C=A \left( \dfrac {e_{33}}{{\epsilon}^S}{\Delta}D+{\Delta}T \right)

V_C=\dfrac {d}{{\epsilon}^S}{\Delta}D

Con estas expresiones en el modelo de Mason, tenemos un modelo equivalente no lineal de un material piezoeléctrico, que incluye los efectos de 2º y 3er orden de distorsión, y podemos estudiar el comportamiento de un componente fabricado con este tipo de materiales en presencia de señales interferentes.

CONCLUSIÓN

En esta entrada hemos querido presentar un modelo eléctrico útil para representar un material piezoeléctrico, extraído a partir de las ecuaciones constitutivas. Esto nos ha permitido llegar al modelo que W.P. Mason obtuvo en los años 40, y entender cómo realizó la extracción de los parámetros del modelo.

No sólo hemos obtenido el modelo de Mason, sino que hemos parametrizado un modelo que pueda representar las variaciones no lineales a partir de las series de Volterra, que nos permitirán realizar un modelo no lineal que incluya los efectos de 2º y 3er orden de distorsión, y poder predecir la respuesta de un dispositivo de estas características en condiciones de señales interferentes.

En la próxima entrada vamos a proceder a estudiar el modelo en un simulador, mostrando cómo se realiza un modelo equivalente del piezoeléctrico incluyendo los parámetros no lineales, describiremos un método de medida para extraer los parámetros no lineales y mostraremos los resultados obtenidos mediante simulación.

REFERENCIAS

  1. W.P. Mason, Electromechanical Transducers and Wave Filters”, Princeton NJ, Van Nostrand, 1948
  2. J. F. Rosenbaum, “Bulk Acoustic Wave Theory and Devices”, Artech House, Boston, 1988.
  3. M. Redwood, “Transient performance of a piezoelectric transducer”, J. Acoust. Soc. Amer., vol. 33, no. 4, pp. 527-536, April 1961.
  4. R. Krimholtz, D.A. Leedom, G.L. Mathaei, “New Equivalent Circuit for Elementary Piezoelectric Transducers”, Electron. Lett. 6, pp. 398-399, June 1970.
  5. Y. Cho and J. Wakita, “Nonlinear equivalent circuits of acoustic devices”, Proc. IEEE Ultrason. Symp., Nov. 1993, vol. 2, pp. 867–872.
  6. C. Collado, E. Rocas, J. Mateu, A. Padilla, and J. M. O’Callaghan, “Nonlinear Distributed Model for BAW Resonators”, IEEE Trans. On Microwave Theory and Techniques, vol. 57, no. 12, pp. 3019-3029, Dec. 2009.
  7. E. Rocas, C. Collado, J.C. Booth, E. Iborra, and R. Aigner, “Unified Model for Bulk Acoustic Wave Resonators’ Nonlinear Effects”, Proc. 2009 IEEE Ultrasonics Symposium, pp. 880-884, Sept. 2009.
  8. M. Ueda, M Iwaki, T. Nishihara, Y. Satoh, and K Hashimoto, “Investigation on Nonlinear Distortion of Acoustic Devices for Radio-Freqquency Applications and Its Suppression”, Proc. 2009 IEEE Ultrasonics Symposium, pp. 876-879, Sept. 2009.
  9. M. Ueda, M Iwaki, T. Nishihara, Y. Satoh, and K Hashimoto, “A Circuit Model for Nonlinear Simulation of Radio-Frequency Filters Employing Bulk Acoustic Wave Resonators”, IEEE Trans. On Ultrasonics, Ferroelectrics, and Frequency control, vol. 55, 2008, pp. 849-856.
  10. D. S. Shim and D. Feld, “A General Nonlinear Mason Model of Arbitrary Nonlinearities in a Piezoelectric Film”, Proc. 2010 IEEE Ultrasonics Symposium, pp. 295-300, Oct. 2010.
  11. D. Feld, “One-Parameter Nonlinear Mason Model for Predicting 2nd & 3rd Order Nonlinearities in BAW Devices”, Proc. 2009 IEEE Ultrasonics Symposium, pp. 1082-1087, Sept. 2009.

Estudio del comportamiento de un material piezoeléctrico (I)

Los dispositivos electrónicos, cada vez más, forman parte de nuestras herramientas de comunicación, y los componentes electrónicos son cada vez más conocidos, lo que permite aprovechar su potencial en el proceso de diseño. En esta entrada vamos a estudiar el comportamiento electromecánico de un material muy popular: el piezoeléctrico, explicaremos las ecuaciones constitutivas del fenómeno y realizaremos un modelo que permita el estudio del comportamiento en un simulador de circuitos.

LOS MATERIALES PIEZOELÉCTRICOS

Un piezoeléctrico consiste en un material no conductor que posee propiedades mecánicas activadas por la aplicación de campos eléctricos. Por reciprocidad, cuando a ese dispositivo piezoeléctrico le aplicamos torsiones y deformaciones mecánicas, también se generan fuerzas de tipo eléctrico.

El material piezoeléctrico más conocido por los diseñadores electrónicos es el cuarzo (SiO2), cristalizado en trigonal (cuarzo-α) hasta 570°C y en hexagonal (cuarzo-β) a temperaturas entre 570° y 870°C. A temperaturas superiores, el cuarzo se transforma en otro compuesto de sílice denominado tridimita.

La cristalización del cuarzo en su variedad hexagonal proporciona propiedades piezoeléctricas cuando se aplica al material campos eléctricos o tensiones mecánicas, y es muy utilizado en electrónica por este comportamiento, logrando obtener resonadores electromecánicos con muy alto factor de calidad.

Otros materiales piezoeléctricos muy utilizados en la industria electrónica son el nitruro de Aluminio (AlN), el óxido de Zinz (ZnO) y los materiales PZT, en diversas variantes.

En esta entrada vamos a estudiar el comportamiento piezoeléctrico a partir de las ecuaciones constitutivas que relacionan las propiedades mecánicas con las eléctricas, y a partir de ahí, obtener un modelo eléctrico que permita su uso en una herramienta de simulación de circuitos.

CONCEPTO DE ONDAS ACÚSTICAS

En Física denominamos onda acústica a un fenómeno mecánico de propagación de una onda de presión a lo largo de un material. Al poseer esta onda de presión una variación temporal periódica, puede propagarse a diversas frecuencias. Las ondas de presión que están situadas en la banda desde 100Hz a 10KHz se caracterizan porque son audibles, esto es, nuestro sentido del oído puede captarlas, enviar la información captada al cerebro y ser procesada para realizar una determinada acción. Sin embargo, todas las ondas de presión entran dentro del concepto de onda acústica, puesto que es un campo de fuerzas que se asemeja al campo eléctrico por su comportamiento.

En las ondas de presión acústicas distinguimos dos magnitudes importantes: la tensión T y la deformación S. La primera, T, es la fuerza por unidad de superficie que aparece en el entorno de un punto material de un medio continuo. Es, por tanto, una presión mecánica cuyas unidades son N/m2.

Descripción de la tensión mecánica

Asociada a ésta aparece la deformación S, que es desplazamiento que se produce en las partículas del material al aplicar una presión sobre éstas. La deformación se mide en m/m.

Desplazamiento producido por una deformación

Desplazamiento producido por una deformación

La relación entre ambas magnitudes se puede expresar asemejando la tensión T con el desplazamiento eléctrico D y la deformación S con el campo eléctrico E. Por tanto, si el campo eléctrico E es proporcional al desplazamiento eléctrico D a través de la constante dieléctrica del material ε, la deformación S es proporcional a la tensión T a través de un tensor constante [cE], como se puede ver en la expresión

\vec{T}=\left[ c^E \right] \vec{S}

Si al desplazamiento mecánico producido le denominamos u, podemos poner la deformación S como un gradiente de este desplazamiento mecánico a través de

\vec{S}=\vec{\nabla}u

Con lo que se puede ver la similitud con el campo eléctrico, que deriva en forma de gradiente de un potencial eléctrico V.

Normalmente T y S son magnitudes vectoriales, y [cE]  es un tensor. Pero si manipulamos el material de modo que sólo tengamos deformación en uno de los ejes (por convenio, a partir de aquí vamos a usar el eje Z), las expresiones se simplifican siendo T y S simples magnitudes escalares, y cE una constante de proporcionalidad. Las dimensiones de esta constante son las mismas que la tensión, tiene dimensiones de presión (N/m2).

La deformación está sujeta a la 2ª ley de Newton, que relaciona la velocidad de deformación con la tensión aplicada a través de

\rho \dfrac {{\partial}^2 u}{\partial t^2}=\vec{\nabla} \vec{T}

 donde ρ es la densidad de masa por unidad de volumen. Como hemos escogido trabajar sólo en una dirección de propagación, podemos poner la divergencia de T como

\vec{\nabla} \vec{T}=\dfrac {\partial T}{\partial z}=c^E \dfrac {\partial S}{\partial z}

y teniendo en cuenta que S es la derivada con respecto a z del desplazamiento mecánico u, introduciendo ésto en la expresión de la Ley de Newton y agrupando los términos obtenemos

\left( \rho \dfrac {{\partial}^2}{\partial t^2} - c^E \dfrac {{\partial}^2}{\partial z^2} \right)u=0

que es una ecuación de onda similar a la que se obtiene del desarrollo de las ecuaciones de Maxwell en electromagnetismo. De esta ecuación se puede derivar la ecuación de Helmholtz, asumiendo que la solución de esta ecuación es una solución del tipo

u=\left( Ae^{-jKz}+Be^{jKz} \right)e^{j \omega t}

y usando esta solución en la ecuación de onda anterior, obtenemos que

\left( \dfrac {{\partial}^2}{\partial z^2} + \dfrac {{\omega}^2 \rho}{c^E} \right)u=0

que corresponde a la ecuación de Helmholtz. En la ecuación de Helmholtz, la constante de propagación K se define por

K=\dfrac {\omega}{v}

donde v es la velocidad de propagación de la onda acústica (velocidad del sonido en el medio acústico). De aquí se puede obtener la constante cE, que está relacionada con el material a través de su densidad y de la velocidad de propagación de la onda acústica en el mismo.

c^E=\rho v^2

Al tratarse de una onda viajando a través de un medio material, podemos tratar la misma como una onda que se propaga a través de una línea de transmisión, cuya impedancia Z0 se obtiene por

Z_0=\rho v

que denominamos impedancia acústica del medio y que se expresa en Rayl o N⋅s/m3. La velocidad de propagación v, que es la velocidad del sonido en el medio material, está relacionada con el desplazamiento acústico lineal a través de

v=\dfrac {\partial u}{\partial t}

y el desplazamiento acústico angular se puede expresar por

\Delta \theta=K \Delta z

Viendo la similitud entre las ecuaciones de la acústica y las ecuaciones del campo electromagnéticos, podemos establecer una analogía en ambos tipos de interacciones que nos va a permitir desarrollar correctamente el estudio de los materiales piezoeléctricos.

ECUACIONES CONSTITUTIVAS DE UN MATERIAL PIEZOELÉCTRICO

En un medio piezoeléctrico, como en cualquier otro material, se producen tensiones y deformaciones acústicas. La peculiaridad del piezoeléctrico es que esas tensiones que aplicamos generan campos eléctricos. Del mismo modo, por reciprocidad, cuando aplicamos un campo eléctrico a un piezoeléctrico, generamos tensiones acústicas en el material. Por tanto, podemos relacionar estas tensiones y campos eléctricos mediante las ecuaciones constitutivas del piezoeléctrico, que son

T=c^ES-e_{33}E

D=e_{33}S+{\epsilon}^SE

Estas ecuaciones muestran la relación entre la tensión generada en la superficie del piezoeléctrico T con la deformación S, cuando se le aplica un campo eléctrico E. Recíprocamente, se produce un desplazamiento eléctrico en el piezoeléctrico cuando se aplica una deformación S, apareciendo un campo eléctrico E. En este caso, además de la constante que relaciona la deformación con la tensión cE, también aparece la constante dieléctrica del material εS y la constante piezoeléctrica e33, que liga la tensión T con el campo eléctrico E en la dirección Z. En un sistema tridimensional, esa constante estaría representada por un tensor.

Con estas ecuaciones constitutivas, podemos obtener la ecuación de onda anterior, teniendo en cuenta las mismas condiciones. Sabiendo que el desplazamiento eléctrico es, por el teorema de Gauss

\dfrac {\partial D}{\partial z}={\rho}_m

y que aunque se le aplique una deformación o un campo eléctrico no hay variación de la carga espacial, podemos reescribir la ecuación de onda anterior como

\left(\rho \dfrac {{\partial}^2}{\partial t^2} -c^D \dfrac {{\partial}^2}{\partial z^2} \right)u=0

donde la constante cD es la constante de deformación cuando aparece un campo electrostático en el medio material y se puede escribir por

c^D=c^E+\dfrac {e_{33}^2}{{\epsilon}^S}

que es característica de un medio piezoeléctrico. Así, la solución a la ecuación de onda será similar a la del caso de un medio material acústico, donde esa constante cD, se puede calcular a través de

c^D=\rho v^2

manteniéndose el resto de ecuaciones igual.

Como la solución de la ecuación de onda del piezoeléctrico es una onda que se propaga en una dirección determinada, podemos representar el medio de propagación como una línea de transmisión de impedancia A⋅Z0, donde Z0 es la impedancia acústica que depende exclusivamente del medio material a través de su densidad ρ y la velocidad de propagación del sonido v en el medio material; y A es la superficie del material piezoeléctrico.

linea

Línea de transmisión equivalente de la parte acústica

Al ser una línea de transmisión, tendrá resonancias cada n·λ/4, siendo λ la longitud de onda de la onda acústica. Si el dieléctrico tiene un espesor d, una resonancia λ/4 en la línea de transmisión. Por tanto, el material piezoeléctrico se puede usar para realizar resonadores eléctricos, ya que la resonancia acústica se puede relacionar, a través de las ecuaciones constitutivas, con la resonancia eléctrica.

CONCLUSIÓN

Hemos visto en esta entrada cómo se producen las ondas acústicas en un material, y la relación existente, a través de las ecuaciones constitutivas, entre los campos acústico y eléctrico.

Los materiales piezoeléctricos son de uso cada vez más común en electrónica, ya sea como resonadores, como generadores de sonido o como generadores de energía eléctrica para Energy Harvesting, realizando alimentadores eléctricos que usan la energía procedente de la vibración acústica para generar una tensión eléctrica.

El modelado circuital equivalente de estos componentes está resuelto a través de las ecuaciones constitutivas, siendo los modelos más habituales el modelo de Redwood o el de Mason.

En las próximas entradas trataremos de explicar el modelo equivalente de Mason de un piezoeléctrico, tanto en su versión lineal como no lineal.

REFERENCIAS

  1. W.P. Mason, Electromechanical Transducers and Wave Filters”Princeton NJ, Van Nostrand, 1948
  2. J. F. Rosenbaum, “Bulk Acoustic Wave Theory and Devices”, Artech House, Boston, 1988.
  3. M. Redwood, “Transient performance of a piezoelectric transducer”, J. Acoust. Soc. Amer., vol. 33, no. 4, pp. 527-536, April 1961.
  4. R. Krimholtz, D.A. Leedom, G.L. Mathaei, “New Equivalent Circuit for Elementary Piezoelectric Transducers”, Electron. Lett. 6, pp. 398-399, June 1970.

Estudio avanzado de los radioenlaces

Hablabamos en diciembre del año pasado del cálculo de radioenlaces. Habíamos puesto como modelos iniciales para dicho cálculo el del espacio libre (representado por la fórmula de Friis) y los modelos de Okumura y Okumura-Hata, que son modelos extrapolados de cálculos estadísticos realizados a través de mediciones reales en entornos urbanos. Sin embargo, estos modelos no incluyen la orografía del terreno, la obstrucción debida a los propios enlaces o fenómenos como la difracción. Estos fenómenos físicos son bastante complejos de analizar, pero cualquier radioenlace que los incluya tendrá más posibilidades de éxito que los que se realicen con el simple modelo del espacio libre o el de Okumura-Hata. En esta entrada estudiamos el modelo de Longley-Rice, basado en el modelo de tierra irregular, que data de los años 60 y que fue desarrollado debido a la que los EE.UU. estaban realizando un plan de asignación de frecuencias para la difusión de TV (Broadcast).

EL MODELO DE LONGLEY-RICE

El modelo de Longley-Rice es un modelo de tierra irregular, conocido por las siglas ITM. Es un modelo de estudio de cobertura de radioenlaces, inicialmente pensado para la cobertura broadcast de TV, dentro del plan de asignación de frecuencias del espectro radioeléctrico.

El modelo se basa en la aplicación de los fenómenos físicos ya conocidos: atenuación en el espacio libre de Friis, elipsoides de Fresnel, difracción, trayectorias multicamino, etc., a los que se añade el efecto de la irregularidad de la Tierra. A partir de ese modelo, se realizan análisis estadísticos de cobertura que se plasman en algoritmos que permitan una predicción lo más atinada posible de esa cobertura.

Imagen de una Tierra con orografía irregular

La Tierra no es regular. Si añadimos al fenómeno de la curvatura terrestre el de la orografía, la propagación electromagnética se encuentra con muchos obstáculos. A frecuencias por debajo de los 30MHz, la emisión radiada suele ser bastante eficaz (las célebres emisoras de Onda Media y Onda Corta), llegando a muchas partes del planeta gracias a la reflexión en la ionosfera, permitiendo que lleguen a otras partes del planeta e incluso dar una vuelta completa. Son las bandas de transmisión de radio y de los radioaficionados, y por lo general es el propio planeta el repetidor.

En función de la banda, las frecuencias radiadas se verán favorecidas en la radioemisión, siendo la banda más baja (Onda Media) una banda nocturna (se ve más favorecida en alcance por la noche), y pasando a diurna hasta que los fenómenos de reflexión debidos a la ionosfera desaparecen y se vuelven caprichosos.

El modelo ITM cubre la banda de 20MHz÷20GHz y hasta 2000km, aunque se está extendiendo ya, debido a la necesidad de realizar radioenlaces a más alta frecuencia, hasta los 40GHz.

El modelo, que incluye los fenómenos electromagnéticos ya conocidos y los combina con una cartografía terrestre donde se incluyen los fenómenos urbanos, de bosque, orográficos y de obstáculos, permite, mediante un análisis estadístico, conocer las posibilidades de una cobertura realizada por un repetidor, estimando cuáles son los valores medios que se pueden llegar a tener en un receptor fijo y en uno móvil.

No obstante, el modelo, que nació en 1968, está en continua evolución, puesto que algunos resultados muestran diferencias con las medidas realizadas, por lo que se hace necesaria una combinación de diversos modelos para tener una estimación más realista.

SOFTWARE BASADO EN LONGLEY-RICE

Existen varias aplicaciones basadas en el modelo de Longley-Rice. Una de ellas, libre y muy sencilla de usar, está realizada por el ingeniero de RF canadiense Roger Coudé, denominada Radio Mobile. Con ella es posible cargar un mapa de una cierta zona, abarcando un determinado territorio, y establecer una red de radioenlaces en la que podamos estudiar la cobertura con cierta seguridad.

El software, de tipo freeware, establece la definición de los sistemas, del tipo de red, de la orografía del terreno, del entorno climático, del tipo de orografía del terreno. También permite la definición de las potencias emitidas por el transmisor y las recibidas por el receptor, así como las ganancias de antena y el tipo de antena utilizado.

Análisis de un enlace de radio punto a punto.

El software permite el análisis punto a punto con la transcripción de la orografía del terreno, representando, además, las elipsoides de Fresnel, y mostrando las contribuciones a las pérdidas en el espacio libre de las obstrucciones, los entornos urbanos y las zonas boscosas.

También es posible analizar redes punto-multipunto, topologías de tipo estrella o de tipo cluster.

Una de las cosas más interesantes del programa es la posibilidad de realizar sobre el mapa diagramas de cobertura, limitando los parámetros óptimos de la red y caracterizándola en función de la posición sobre el terreno, así como de obtener localizaciones favorecidas para obtener la mejor ubicación.

No obstante, tenemos que recordar que se trata de un simulador, y como todos los simuladores, tiene la eficiencia de la cantidad de datos que proporcionemos, y muchos de ellos no son de fácil modelización. Para ello, voy a estudiar un ejemplo que realicé hace unos años con un radioenlace que tuve que colocar en un camping de la Bretaña francesa, en Quimper.

EL PROBLEMA DEL CAMPING DE QUIMPER

En el año 2008 tuve que ir a instalar un radioenlace en el camping Port de Plaisance, en Quimper. Se trataba de una instalación destinada a emitir la TNT (Télévision Numérique Terrestre) dentro del entorno del camping, ya que la señal del repetidor llegaba con una señal ya muy baja a algunos de los bungalows del camping.

Parecía que se trataba de una instalación sencilla: el camping no tenía más de 700m de longitud, por lo que un repetidor de 500mW parecía más que suficiente para cubrir el terreno. El problema partía de la normativa de TNT en Francia exigía que cualquier repetidor tenía que ponerse en modo SFN (Single Frequency Network), por lo que había que emitir en el mismo canal que se recibía. No era posible realizar, pues, cambio de canalización.

Esta situación limitaba mucho la potencia de nuestro repetidor, ya que al emitir en la misma frecuencia y carecer de un sistema de cancelación de ecos (realimentación producida al acoplarse la frecuencia emitida en la antena de recepción del repetidor), había que disminuir el nivel de salida del repetidor para evitar oscilaciones.

El camping tenía una distribución que podemos ver en el siguiente mapa:

benodet

Camping “Port de Plaisance”

Por supuesto, el objetivo era cubrir todos los bungalows, y para ello utilizamos el modelo de espacio libre. La ubicación tanto de la antena de recepción como la de transmisión fueron definidas por la dirección del camping, así como la ubicación de los equipos, que serían colocados en unas dependencias a las que no podían acceder los clientes.

Atendiendo al modelo de cobertura del espacio libre, teníamos entre 70 y 80dB de pérdidas en las frecuencias de UHF en las que íbamos a emitir. Por tanto, el problema de la potencia quedaba resuelto, ya que con 50mW de emisión llegábamos perfectamente a cualquier punto del camping con una antena omnidireccional, con una ganancia del orden de 9dBi. De hecho, en el peor punto llegábamos con 57dBμV, 10dB más que los que se recomiendan como límite inferior para recibir una señal de TV COFDM correcta. Así que con la alegría de que íbamos a poner un repetidor en Francia, nos acercamos a Quimper a finales del invierno de 2008, a hacer la instalación y tomar las medidas.

El primer inconveniente con el que nos encontramos fue, precisamente, el problema de la realimentación. Ya sabíamos que podría ocurrir, pero las estimaciones calculadas y las reales nos mostraron que no podíamos sacar más de 75mW en el mejor de los casos, y con este nivel en algunas ocasiones el canal concreto se ponía a oscilar. El valor de 50mW era también algo optimista, aunque era un valor, en principio, seguro.

Otra de las cosas que no introdujimos en los cálculos era el gran número de ostáculos a los que se enfrentaba nuestro repetidor. Como buen camping situado en una zona tan húmeda como la Bretaña francesa, el terreno tenía abundante vegetación y arbolado, y en muchas ocasiones los árboles se topaban con el camino radioeléctrico como si fuesen un muro. No obstante, logramos colocar el repetidor y de las mediciones que hicimos, vimos que teníamos nivel de señal óptimo, aunque 6 o 7 dB inferior al que el modelo del espacio libre nos predecía.

Al cabo de dos meses, desde la dirección del camping nos telefonearon indicando que en muchos sitios del camping no se recibía la señal de TNT, y que los clientes se quejaban porque era un servicio ofertado por el camping y querían dicho servicio. Así que con los equipos en la mano, volvimos para estudiar “in situ” lo que ocurría.

A nuestra llegada, pudimos comprobar con estupor que las arboledas sin hojas de marzo se habían convertido en un frondoso bosque. Teniendo a mano las medidas realizadas, volvimos a hacer la comparativa y donde antes teníamos del orden de 50dBμV, ahora teníamos menos de 45dBμV, por lo que en algunos sitios la señal estaba pixelando continuamente o entraba a negro, dependiendo de la calidad del receptor. Un desastre, vamos.

Así que tuvimos que recurrir a reajustar el repetidor, teniendo en cuenta que no podíamos dar más de 75mW, si no queríamos que el canal oscilase. La dirección del camping tampoco permitía el cambio de canal, por lo que teníamos pocas opciones. Así que la solución fue buscar un punto de potencia de salida que permitiese la cobertura justa, e intentar buscar los lugares donde esta cobertura era mala, para intentar dar con una solución, que consistía en la instalación de un microrrepetidor de menos potencia.

Por tanto, ahí descubrí que el modelo del espacio libre era eso: del espacio libre. No era válido para realizar una estimación de cobertura para una instalación sobre un determinado terreno.

¿Y SI HUBIESE TENIDO EL SIMULADOR RADIO MOBILE?

Hoy, después de 6 años y medio de aquella instalación, he hecho el análisis de la misma a través del software Radio Mobile y me he encontrado con que aquellos datos que tomé en su momento eran correctos, y que mi hipótesis inicial, presentada en el informe de la instalación, era acertada. Al justificar que la existencia de obstrucciones en el camping no me permitían una cobertura total, las conclusiones eran discutidas y tomadas como poco rigurosas.

De hecho, al tomar el peor punto de la red, que llamaremos Receptor 2, pude comprobar que en condiciones de obstrucción la señal, que en espacio libre estaba sobrada, estaba atenuada en 12dB más, lo que hacía que la señal cayese por debajo de la señal que habíamos puesto como límite, e incluso por debajo de la señal óptima.

Transmisión simulada en el punto peor del camping Port de Plaisance

Entonces, decidí hacer una simulación de la cobertura desde el repetidor, para ver cómo se distribuía la señal, y obtuve el siguiente plano de cobertura

Mapa de cobertura del camping “Port de Plaisance”. En rojo, fuera de cobertura. En amarillo, cobertura débil. En verde, buena cobertura.

donde pude comprobar, a partir del mapa de terreno que usa el programa, que había zonas internas de mala cobertura y que las zonas donde tenía una cobertura débil (que dependiendo de las condiciones climatológicas podía ser incluso mala), eran superiores a las que en principio me mostraba el modelo del espacio libre. Y que la zona en la que el modelo de espacio libre nos daba como peor, pero dentro de características, se ajustaba a los valores obtenidos en las medidas.

CONCLUSIONES

Si hubiese tenido este software de simulación en el momento de estudiar la instalación del repetidor en “Port de Plaisance”, para nada hubiese acudido a montar el repetidor si no tengo la cobertura garantizada. Incluso con el máximo nivel de 500mW la cobertura no estaba garantizada, con algunas zonas de sombra que no podríamos cubrir.

cover2

Cobertura con el máximo nivel de 500mW.

El programa me ha demostrado, pues, mucha utilidad para el cálculo de coberturas. Al menos, se obtienen cosas bastante más realistas que el optimismo inicial del modelo del espacio libre.

REFERENCIAS

  1. P.L. Rice, “Transmission loss predictions for tropospheric communication circuits”, Volume I & II, National Bureau of Standards, Tech. Note 101
  2. A. G. Longley and P. L. Rice, “Prediction of tropospheric radio transmission loss over irregular terrain. A computer method-1968”, ESSA Tech. Rep. ERL 79-ITS 67, U.S. Government Printing Office, Washington, DC, July 1968