¿Hacen su labor los medios respecto a la forma de tratar los conocimientos científicos?

trudeauDejando un poco aparte (al menos, hasta el próximo mes) la divulgación técnica pura, recientemente me he encontrado con una noticia en varios medios que me ha parecido, cuanto menos, sorprendente. No porque el Primer Ministro canadiense sepa bastante de Mecánica Cuántica, ya que podría estar sorprendido en el caso de que conociese su trayectoria académica y en ésta no describa si ha estudiado o no sobre el tema, sino por el grado de desconocimiento que algunos periodistas tienen de las personas a las que están preguntando, que pueden provocar patinazos (o como se dice en el argot de Twitter, “zascas en toda la boca”) como el del que se han hecho eco nuestros medios. Por este motivo, me he lanzado a escribir una entrada de opinión sobre el tema, retomando de algún modo uno de los apartados que quise siempre para este blog, que fuese también un lugar de divulgación para todos los públicos y no sólo para los muy técnicos. Con ese compromiso retomo desde hoy la inclusión de entradas no exclusivamente técnicas, que estén relacionadas, como siempre, con el mundo científico y tecnológico y sus avances.

LA ACTITUD DE POLÍTICOS Y PERIODISTAS FRENTE A LOS CONOCIMIENTOS CIENTÍFICOS

Recientemente, la prensa vulgarmente llamada “seria” se ha hecho eco de un hecho que, parece ser, consideran “anormal”: que un Primer Ministro, además de tener ese cargo, dé una clase magistral de Computación Cuántica a un periodista que quiso pasarse de listo, cuando requirió a Justin Trudeau que le explicase algo sobre dicho tema. Ni corto ni perezoso, el mandatario canadiense no sólo le contestó sino que le dio una clase magistral de 35 segundos a un periodista que creyó que ésta era la suya.

Vivimos unos tiempos en los que parece que el pensamiento crítico más elemental ha desaparecido de algunos despachos oficiales y algunas líneas editoriales, y que se juzga más a la gente por un tuit equivocado que por una larga trayectoria, sin que se haga el más mínimo esfuerzo en conocer a quién te diriges cuando le preguntas. Algo que debería ser elemental para cualquier profesional de los medios de comunicación: si quieres saber cómo te va a contestar y si te va a contestar a una pregunta, primero estudia la trayectoria del interrogado, para que sepas hacerle la pregunta.

Parece ser que a los medios les sorprende que Justin Trudeau sepa de Computación Cuántica porque muchos de los lectores eso les suena a chino mandarín, también en parte gracias a la pésima labor de divulgación de algunos medios escritos, que suelen equiparar ciencia con pseudociencia, como si ambas estuviesen en el mismo nivel, alegando esa excusa de que todo el mundo tiene derecho a que se les proporcione información. Lo que pasa es que se les suele olvidar el adjetivo milagroso: veraz.

Cierto es que muchos políticos carecen de conocimientos científicos, y algunos hasta adolecen del más elemental conocimiento acerca de lo que significa el mundo científico y sus avances, usándolo sólo los mismos cuando se trata de hacerse una foto frente a un científico famoso cuando ha ganado algún premio. Un caso paradigmático fue el del Dr. D. Severo Ochoa: cuando ganó el premio Nobel, el régimen imperante en España se acordó de él y le quiso repatriar con promesas de inversiones y laboratorios, cuando unos años antes ese mismo régimen no le concedía ni el pasaporte para poder salir de la Alemania nazi. Muchos políticos adolecen de esa falta, pero también es cierto que otros tienen cultura científica, sin que la prensa les preste atención cuando opinan de algo que no sea la pura palestra política.

¿DE QUÉ NOS EXTRAÑAMOS SI HEMOS TENIDO POLÍTICOS CON DOS TITULACIONES Y HASTA LAS EJERCÍAN?

boyer1-aEsta prensa que hoy está jaleando a Trudeau, convirtiendo en noticia algo que no debería serlo tanto, es la misma prensa que obvió o que no concedió interés a un artículo de Miguel Boyer Salvador, ex-Ministro de Economía del primer gabinete de Felipe González, en el que el recientemente fallecido economista hacía una disertación acerca del dilema que supondría si los resultados obtenidos en el proyecto OPERA en 2011 (neutrinos viajando a una velocidad más alta que la de la luz) se verificaban. En su etapa más joven, Miguel Boyer, Licenciado en Ciencias Económicas y Ciencias Físicas, también opinaba sobre temas científicos y sobre la filosofía de la ciencia. No era, pues, un político inculto científicamente pues de cuando en cuando, el ex-Ministro de Economía se dejaba caer por Universidades de Verano siendo participante o ponente de cursillos que no eran ni estrictamente políticos ni económicos.

Aunque este artículo se hubiese publicado después de la clase magistral de Trudeau, los periodistas hubiesen seguido sin prestarle atención, puesto que el titular era que hay un político que no es inculto y que sabe de Mecánica Cuántica, como si hubiesen probado la existencia de los unicornios, en lugar de haber estudiado antes la biografía de Justin Trudeau y su brillante trayectoria académica, en la que se destaca, aparte de su Licenciatura en Educación, sus estudios de ingeniería en la Politécnica de la Universidad de Montreal y su Maestría en Geografía Medioambiental en la Universidad McGill, lo que viene a mostrar a un hombre que se preocupa por formarse cuando quiere dotarse de una opinión contrastada. Desgraciadamente, aquellos políticos que adolecen de esa falta de rigor, tratando con desdén los conocimientos científicos y a las personas que los generan, tapan la brillantez de otros políticos que sí que se preocupan de su autoformación. Estos últimos los hay, existen, pero no son tan noticia para una prensa que un día publica el descubrimiento del Bosón de Higgs y al día siguiente, en el mismo apartado de Ciencia, una disertación sobre los peligros de las ondas electromagnéticas no ionizantes, si bien es cierto que la camada de políticos más brillantes de la reciente Historia de España se ha dado, precisamente, en la Transición. Hoy en día, muchos políticos lo son de carrera, ascendiendo dentro del propio partido sin haber tenido experiencia previa en otro sitio diferente.

Sin embargo, con el perfil de estos políticos también aparece el perfil del periodista que desdeña la labor de proporcionar esa información veraz. Porque la información tiene que ser eso, veraz, ya que la prensa de hoy día será la fuente de la Historia de mañana, como los autores clásicos del mundo romano nos permiten conocer cómo era su tiempo y sus costumbres.

No se puede tampoco meter en este saco a todos los periodistas, puesto que los hay muy brillantes dentro de esta profesión. Pero sí hay que indicar que la tendencia a vivir a ritmo de tuit en lugar de hacer la pesada y ardua labor de documentarse previamente está causando, en mi opinión, estragos entre lo que debería ser la diferencua entre una información veraz y puro rumo, cotilleo o “chisme”.

Hoy en día, el  mundo científico español y, sobre todo, nuestros científicos están sufriendo, por un lado, la apatía de quienes gobiernan actualmente nuestro país, cuyo rigor a la hora de tratar este conocimiento es poco menos que nulo, despreciando un modelo productivo basado en el valor añadido del conocimiento, y basándose en el agotado modelo del yo te lo hago más barato, condenando con esa política por un lado, a limitar el crecimiento de nuestro país, y por otro, a la mal llamada movilidad laboral de nuestros científicos, obligados a tener que coger las maletas y ejercer su profesión en centros de investigación y laboratorios de otros países, donde este conocimiento no es desdeñado sino que se ve como una oportunidad.

Y ésa debería ser la labor de la prensa llamada “seria”: centrar la importancia en el conocimiento científico y evitar el recurso fácil de reproducir titulares facilones para atraer más público, así como dejar de situar al mismo nivel este conocimiento y la falta de evidencia de las pseudociencias. Porque el hecho de que haya políticos incultos científicamente no convierte a los que publican noticias en expertos en ciencia. Dentro del mundo periodístico hay incultos científicamente como los hay en casi todas las profesiones no relacionadas con éste ámbito. Así que espero que el “zasca” a este periodista retome un poco la deontología de que cualquier entrevista, editorial o titular debe de estar tan rigurosamente documentada en fuentes como lo está un artículo sobre la Física de Plasmas.

REFERENCIAS

  1. Boyer Salvador, M.,”Dilema radical en la física: “Einstein, ¿sí o no?”“,El País, 6/10/2011
  2. Boyer Salvador, M.,”Popper y los nuevos filósofos de la ciencia“, El País, 7/11/1984
  3. Delgado, J.,”Boyer defiende la libertad como valor absoluto en el seminario sobre Popper“, El País, 31/07/1991
  4. Justin Trudeau, Wikipedia
  5. Justin Trudeau, Liberal Party Website
  6. Miguel Boyer Salvador, Wikipedia

 

Statistical analysis using Monte Carlo method (II)

Art02_fig01

In the previous post, some single examples of the Monte Carlo method were shown. In this post it will be deeply analyzed, making a statistical analysis on a more complex system, analyzing its output variables and studying the results so that they will be quite useful. The advantage of simulation is that it is possible to get a random generation of variables, and also a correlation between variables can be set, achieving different effects in the analysis of the system performance. Thus, any system not only can be analyzed statistically using a random generation of variables, but also this random generation can be linked in a batch analysis or failures in production and in a post-production recovery.

The circuits studied in the previous post were very simple circuits, allowing to see the allocation of random variables and their results when these random variables are integrated a more complex system. With this analysis, it is possible to check the performance and propose corrections which would limit statistically the variations in the final system.

In this case, the dispersive effect of the tolerances will be studied on one of the circuits where it is very difficult to achieve an stability in its features: an electronic filter. An electronic filter, passband type, will be designed and tuned to a fixed frequency, with a certain bandwidth in passband and stopband, and several statistical analysis will be done on it, to check its response with the device tolerances.

DESIGN OF THE BANDPASS FILTER

A bandpass filter design is done, with a 37,5MHz center frequency, 7MHz pass bandwidth (return losses ≥14dB) and a 19MHz stopband bandwidth (stopband attenuation >20dB). When the filter is calculating, three sections are got, and its schematic is

Filtro paso banda de tres secciones

3-sections bandpass filter

With the calculated values of the components, standard values which can make the filter transfer function are found, and its frequency response is

Respuesta en frecuencia del filtro paso banda

Bandpass filter frequency response

where it is possible to check that the center frequency is 37.5 MHz, the return losses are lower than 14dB at ± 3.5Mhz of the center frequency, and the stopband width is 18,8MHz, with 8,5MHz from the left of the center frequency and 10,3MHz to the right of the center frequency.
Then, once the filter is designed, a first statistical analysis is done, considering that the capacitor tolerance is ± 5% and the inductors are adjustable. In addition, there is not any correlation between the random variables, being able to take an random value independently.

STATISTICAL ANALYSIS OF THE FILTER WITHOUT CORRELATION BETWEEN VARIABLES

As it could be seen in the previous post, when there are random variables there is an output dispersion, so limits to consider a valid filter must be defined, from these limits, to analyze its valid frequency response. Yield analysis is used. This is an analysis using the Monte Carlo algorithm that it allows  to check the performance or effectiveness of the design. To perform this analysis, the limits-for-validation specifications must be defined. The chosen specifications are return losses >13,5dB at 35÷40MHz, with a 2 MHzreduction in the passband width and an attenuation >20dB at frequencies ≤29MHz and ≥48MHz. By statistical analysis, it is got

Análisis estadístico del filtro. Variables sin correlación.

Statistical analysis of the filter . Variables without correlation.

whose response is bad: only 60% of possible filters generated by variables with a ±5% tolerance could be considered valid. The rest would not be considered valid by a quality control, which would mean that 40% defective material should be returned to the production, to be reprocessed.

It can be checked in the graph that the return loss are the primarily responsible for this bad performance. What could it be done to improve it? In this case, there are 4 random variables. However, two capacitors have of the same value (15pF), and when they are assembled in a production process, usually belong to the same manufacturing batch. If these variables show no correlation, variables can take completely different values. When they are not correlated, the following chart is got

Condensadores C1 y C3 sin correlación

C1, C3 without correlation

However, when these assembled components belong to the same manufacturing batch, their tolerances vary always to the same direction, therefore there is correlation between these variables.

STATISTICAL ANALYSIS OF THE FILTER WITH CORRELATION BETWEEN VARIABLES

When the correlation is used, the influence of tolerances is decreased. In this case, it is not a totally random process, but manufacturing batches in which the variations happen. In this case, it is possible to put a correlation between the variables C1 and C3, which have the same nominal value and belong the same manufacturing batch, so now the correlation graph is

Condensadores C1 y C3 con correlación

C1, C3 with correlation

where the variation trend in each batch is the same. Then, putting a correlation between the two variables allows studying the effective performance of the filter and get

Análisis estadístico con C1, C2 variables correladas

Statistical analysis with correlation in C1, C3

that it seems even worse. But what happens really? It must be taken into account that the variable correlation has allowed analyzing complete batches, while in the previous analysis was not possible to discern the batches. Therefore, 26 successful complete manufacturing processes have been got, compared to the previous case that it was not possible to discern anything. Then, this shows that from 50 complete manufacturing processes, 26 processes would be successful.

However, 24 complete processes would have to be returned to production with the whole lot. And it remains really a bad result. But there is a solution: the post-production adjustment.

STATISTICAL ANALYSIS WITH POST-PRODUCTION ADJUSTMENT

As it was said, at this point the response seems very bad, but remembering that the inductors had set adjustable. What happens now? Doing a new analysis, allowing at these variable to take values in ±10% over the nominal value, and setting the post-production optimization in the Monte Carlo analysis and voilà! Even with a very high defective value, it is possible to recover 96% of the filters within the valid values.

Análisis estadístico con ajuste post-producción

Statistical analysis with post-production optimization

So an improvement is got, because the analysis is showing that it is possible to recover almost all of the batches with the post-production adjustment, so this analysis allows showing not only the defective value but also the recovery posibilities.
It is possible to represent the variations of the inductors (in this case corresponding to the serial resonances) to analyze what is the sensitivity of the circuit to the more critical changes. This analysis allows to set an adjustment pattern to reduce the adjustment time that it should have the filter.

Análisis de los patrones de ajuste en las inducciones de las resonancias serie

Analysis of the adjustment patterns of the serial resonance inductors

So, with this analysis, done at the same time design, it is possible to take decisions which set the patterns of manufacturing of the products and setting the adjustment patterns for the post-production, knowing previously the statistic response of the designed filter. This analysis is a very important resource before to validate any design.

CONCLUSIONS

In this post, a more grade in the possibilities of using Monte Carlo statistical analysis is shown, using statistical studies. The algorithm provides optimal results and allows setting conditions for various analysis and optimizing more the design. Doing a post-production adjustment, it is possible to get the recovery grade of the proposed design. In the next post, another example of the Monte Carlo method will be done that allows seeing more possibilities over the algorithm.

REFERENCES

  1. Castillo Ron, Enrique, “Introducción a la Estadística Aplicada”, Santander, NORAY, 1978, ISBN 84-300-0021-6.
  2. Peña Sánchez de Rivera, Daniel, “Fundamentos de Estadística”, Madrid,  Alianza Editorial, 2001, ISBN 84-206-8696-4.
  3. Kroese, Dirk P., y otros, “Why the Monte Carlo method is so important today”, 2014, WIREs Comp Stat, Vol. 6, págs. 386-392, DOI: 10.1002/wics.1314.

Análisis estadísticos usando el método de Monte Carlo (II)

Art02_fig01En la anterior entrada mostramos con una serie de ejemplos simples cómo funciona el método de Monte Carlo para realizar análisis estadísticos. En esta entrada vamos a profundizar un poco más, haciendo un análisis estadístico más profundo sobre un sistema algo más complejo, analizando una serie de variables de salida y estudiando sus resultados desde una serie de ópticas que resultarán bastante útiles. La ventaja que tiene la simulación es que podemos realizar una generación aleatoria de variables, y además, podemos establecer una correlación de esas variables para conseguir distintos efectos al analizar el funcionamiento de un sistema. Así, cualquier sistema no sólo se puede analizar estadísticamente mediante una generación aleatoria de entradas, sino que podemos vincular esa generación aleatoria a análisis de lotes o fallos en la producción, así como su recuperación post-producción.

Los circuitos que vimos en la anterior entrada eran circuitos muy sencillos que permitían ver cómo funciona la asignación de variables aleatorias y el resultado obtenido cuando estas variables aleatorias forman parte de un sistema más complejo. Con este análisis, podíamos comprobar un funcionamiento y hasta proponer correcciones que, por sí solas, limitasen las variaciones estadísticas del sistema final.

En este caso, vamos a estudiar el efecto dispersivo que tienen las tolerancias sobre uno de los circuitos más difíciles de conseguir su funcionamiento de forma estable: el filtro electrónico. Partiremos de un filtro electrónico de tipo paso banda, sintonizado a una determinada frecuencia y con una anchura de banda de paso y rechazo determinadas, y realizaremos varios análisis estadísticos sobre el mismo, para comprobar su respuesta cuando se somete a las tolerancias de los componentes.

DISEÑO DEL FILTRO PASO BANDA

Vamos a plantear el diseño de un filtro paso banda, centrado a una frecuencia de 37,5MHz, con un ancho de banda de 7MHz para unas pérdidas de retorno mayores que 14dB, y un ancho de banda de rechazo de 19MHz, con atenuación mayor de 20dB. Calculando el filtro, se obtienen 3 secciones, con el siguiente esquema

Filtro paso banda de tres secciones

Filtro paso banda de tres secciones

Con los valores de componentes calculados, se buscan valores estándar que puedan hacer la función de transferencia de este filtro, cuya respuesta es

Respuesta en frecuencia del filtro paso banda

Respuesta en frecuencia del filtro paso banda

donde podemos ver que la frecuencia central es 37,5MHz, que las pérdidas de retorno están por debajo de 14dB en ±3,5MHz de la frecuencia central y que el ancho de banda de rechazo es de 18,8MHz, con 8,5MHz a la izquierda de la frecuencia central y 10,3MHz a la derecha de la frecuencia central.

Bien, ya tenemos diseñado nuestro filtro, y ahora vamos a hacer un primer análisis estadístico, considerando que las tolerancias de los condensadores son ±5%, y que las inducciones son ajustables. Además, no vamos a indicar correlación en ninguna variable, pudiendo tomar cada variable un valor aleatorio independiente de la otra.

ANÁLISIS ESTADÍSTICO DEL FILTRO SIN CORRELACIÓN ENTRE VARIABLES

Como vimos en la entrada anterior, cuando tenemos variables aleatorias vamos a tener dispersión en la salida, así que lo óptimo es poner unos límites según los cuales podremos considerar el filtro válido, y a partir de ahí analizar cuál es su respuesta. Para ello se recurre al análisis YIELD, que es un análisis que, usando el algoritmo de Monte Carlo, nos permite comprobar el rendimiento o efectividad de nuestro diseño. Para realizar este análisis hay que incluir las especificaciones según las cuales se puede dar el filtro por válido. Las especificaciones elegidas son unas pérdidas de retorno superiores a 13,5dB entre 35÷40MHz, con una reducción de 2MHz en la anchura de banda, y una atenuación mayor de 20dB por debajo de 29MHz y por encima de 48MHz. Haciendo el análisis estadístico obtenemos

Análisis estadístico del filtro. Variables sin correlación.

Análisis estadístico del filtro. Variables sin correlación.

que, sinceramente, es un desastre: sólo el 60% de los posibles filtros generados por variables con un ±5% de tolerancia podrían considerarse filtros válidos. El resto no serían considerados como válidos en un control de calidad, lo que significaría un 40% de material defectivo que se devolvería al proceso de producción.

De la gráfica se puede ver, además, que son las pérdidas de retorno las principales responsables de que exista tan bajo rendimiento. ¿Qué podemos hacer para mejorar este valor? En este caso, tenemos cuatro variables aleatorias. Sin embargo, dos de ellas son del mismo valor (15pF), que cuando son montadas en un proceso productivo, suelen pertenecer al mismo lote de fabricación. Si estas variables no presentan ninguna correlación, las variables pueden tomar valores completamente dispares. Cuando las variables no presentan correlación, tendremos la siguiente gráfica

Condensadores C1 y C3 sin correlación

Condensadores C1 y C3 sin correlación

Sin embargo, cuando se están montando componentes de un mismo lote de fabricación, las tolerancias que presentan los componentes varían siempre hacia el mismo sitio, por tanto hay correlación entre dichas variables.

ANÁLISIS ESTADÍSTICO DEL FILTRO CON CORRELACIÓN ENTRE VARIABLES

Cuando usamos la correlación entre variables, estamos reduciendo el entorno de variación. En este caso, lo que analizamos no es un proceso totalmente aleatorio, sino lotes de fabricación en los cuales se producen las variaciones. En este caso, hemos establecido la correlación entre las variables C1 y C3, que son del mismo valor nominal y que pertenecen la mismo lote de fabricación, por lo que ahora tendremos

Condensadores C1 y C3 con correlación

Condensadores C1 y C3 con correlación

donde podemos ver que la tendencia a la variación en cada lote es la misma. Estableciendo entonces la correlación entre ambas variables, estudiamos el rendimiento efectivo de nuestro filtro y obtenemos

Análisis estadístico con C1, C2 variables correladas

Análisis estadístico con C1, C2 variables correladas

que parece todavía más desastroso. Pero ¿es así? Tenemos que tener en cuenta que la correlación entre variables nos ha permitido analizar lotes completos de fabricación, mientras que en el análisis anterior no se podía discernir los lotes. Por tanto, lo que aquí hemos obtenido son 26 procesos de fabricación completos exitosos, frente al caso anterior que no permitía discernir nada. Por tanto, esto lo que nos muestra es que de 50 procesos completos de fabricación, obtendríamos que 26 procesos serían exitosos.

Sin embargo, 24 procesos completos tendrían que ser devueltos a la producción con todo el lote. Lo que sigue siendo, realmente, un desastre y el Director de Producción estaría echando humo. Pero vamos a darle una alegría y a justificar lo que ha intentado siempre que no exista: el ajuste post-producción.

ANÁLISIS ESTADÍSTICO CON AJUSTE POST-PRODUCCIÓN

Como ya he dicho, a estas alturas el Director de Producción está pensando en descuartizarte poco a poco, sin embargo, queda un as en la manga, recordando que las inducciones las hemos puesto de modo que sean ajustables. ¿Tendrá esto éxito? Para ello hacemos un nuevo análisis, dando valores variables en un entorno de ±10% sobre los valores nominales, y activamos el proceso de ajuste post-producción en el análisis y ¡voilà! Aun teniendo un defectivo antes del ajuste muy elevado, logramos recuperar el 96% de los filtros dentro de los valores que se habían elegido como válidos

Análisis estadístico con ajuste post-producción

Análisis estadístico con ajuste post-producción

Bueno, hemos ganado que el Director de Producción no nos corte en cachitos, ya que el proceso nos está indicando que podemos recuperar la práctica totalidad de los lotes, eso sí, con el ajuste, por lo que con este análisis podemos mostrar no sólo el defectivo sino la capacidad de recuperación del mismo.

Podemos representar cómo han variado las inducciones (en este caso las correspondientes a las resonancias en serie) para poder analizar cuál es la sensibilidad del circuito frente a las variaciones más críticas. Este análisis permite establecer un patrón de ajuste para reducir el tiempo en el que se debe de tener un filtro exitoso.

Análisis de los patrones de ajuste en las inducciones de las resonancias serie

Análisis de los patrones de ajuste en las inducciones de las resonancias serie

Así, con este tipo de análisis, realizado en el mismo momento del diseño, es posible tomar decisiones que fijen los patrones posteriores de la fabricación de los equipos y sistemas, pudiendo establecer patrones fijos de ajuste post-producción sencillos al conocer de antemano la respuesta estadística del filtro diseñado. Una cosa muy clara que he tenido siempre, es que cuando no he hecho este análisis, el resultado es tan desastroso como muestra la estadística, así que mi recomendación como diseñador es dedicarle tiempo a aprender cómo funciona y hacerle antes de que le digas a Producción que tu diseño está acabado.

CONCLUSIONES

En esta entrada hemos querido mostrar un paso más en las posibilidades del análisis estadístico usando Monte Carlo, avanzando en las posibilidades que muestra el método a la hora de hacer estudios estadísticos. El algoritmo nos proporciona resultados y nos permite fijar condicionantes para realizar diversos análisis y poder optimizar más si se puede cualquier sistema. Hemos acudido hasta a un ajuste post-producción, a fin de calmar la ira de nuestro Director de Producción, que ya estaba echando humo con el defectivo que le estábamos proporcionando. En la siguiente entrada, abundaremos un poco más en el método con otro ejemplo que nos permita ver más posibilidades en el algoritmo.

REFERENCIAS

  1. Castillo Ron, Enrique, “Introducción a la Estadística Aplicada”, Santander, NORAY, 1978, ISBN 84-300-0021-6.
  2. Peña Sánchez de Rivera, Daniel, “Fundamentos de Estadística”, Madrid,  Alianza Editorial, 2001, ISBN 84-206-8696-4.
  3. Kroese, Dirk P., y otros, “Why the Monte Carlo method is so important today”, 2014, WIREs Comp Stat, Vol. 6, págs. 386-392, DOI: 10.1002/wics.1314.

 

Statistical analysis using Monte Carlo method (I)

imagesWhen any electronic device is designed, we can use several deterministic methods for calculating its main parameters. So, we can get the parameters that we measure physically in any device or system. These preliminary calculations allow the development and their results are usually agreed with the prediction. However, we know that everything we manufacture is always subject to tolerances. And these tolerances cause variations in the results that often can not be analyzed easily, without a powerful calculation application. In 1944, Newmann and Ulam developed a non-deterministic, statistical method called Monte Carlo. In the following blog post.  we are going to analyze the use of this powerful method for predicting possible tolerances in circuits, especially when they are manufactured industrially.

In any process, the output result is a function of the input variables. These variables generate a response which can be determined, both if the system is linear and if it is not linear. The relationship between the response and the input variables is called transfer function, and its knowledge allows us to get any result concerning the input excitation.

However, it must be taken in account that the input variables are random variables, with their own distribution function, and are subject to stochastic processes, although their behavior is predictable through the Theory of Probability. For example, when we make any measure, we get its average value and the error in which can be measured that magnitude. This allows to limit the environment in which it is correct and decide when the magnitude behaves incorrectly.

For many years, I have learned to successfully transform the results obtained by simulations in real physical results, with predictable behavior and I got valid conclusions, and I have noticed that in most cases the use of the simulation is reduced to get the desired result without studying the dependence of the variables in that result. However, most simulators have very useful statistical algorithms that, properly used, allow to get a series of data that the designer can use in the future, predicting any system behavior, or at least analyzing what it can happen.

However, these methods are not usually used. Either for knowledge lack of statistical patterns, or for ignorance of how these patterns can be used. Therefore, in these posts we shall analyze the Monte Carlo method on circuit simulations and we shall discover an important tool which is unknown to many simulator users.

DEVICES LIKE RANDOM VARIABLES

Electronic circuits are made by simple electronic devices, but they have a statistical behavior due to manufacturing. Device manufacturers usually show their nominal values and tolerances. Thus, a resistance manufacturer not only publishes its rating values and its dimensions. Tolerances, stress, temperature dependance, etc., are also published. These parameters provide important information, and propertly analyzed with a powerful calculation tool (such as a simulator), we can predict the behavior of any complex circuit.

In this post, we are going to analyze exclusively the error environment around the nominal value, in one resistor. In any resistor, the manufacturer defines its nominal value and its tolerance. We asume these values 1kΩ for the nominal value and ± 5% for its tolerance. It means the resistance value can be found between 950Ω and 1,05kΩ. In the case of a bipolar transistor, the current gain β could take a value between 100 and 600 (i.e. NXP BC817), which may be an important and uncontrollable variation of current collector. Therefore, knowing these data, we can analyze the statistical behavior of an electronic circuit through the Monte Carlo method.

First, let us look resistance: we have said that the resistance has a ± 5% tolerance. Then, we will analyze the resistor behavior with the Monte Carlo method, using a circuit simulator. A priori, we do not know the probability function, although most common is a Gaussian function, whose expression is well known

f_{\mu,\sigma^2}(x)=\dfrac {1}{\sigma \sqrt {2 \pi}}e^{\dfrac {(x-\mu)^2}{\sigma^2}}

being μ the mean and σ² the variance. Analyzing by the simulator, through Monte Carlo method and with 2000 samples, we can get a histogram of resistance value, like it is shown in the next figure

Distribución de los valores de la resistencia usando el análisis de Monte Carlo

Histogram of the resistor

Monte Carlo algorithm introduces a variable whose value corresponds to a Gaussian distribution, but the values it takes are random. If these 2000 samples were taken in five different processes with 400 samples each one, we would still find a Gaussian tendency, but their distribution would be different

Distribuciones gaussianas con varios lotes

Gaussian distributions with different processes

Therefore, working properly with the random variables, we can get a complete study of the feasibility of any design and the sensitivity that each variable shows. In the next example, we are going to analyze the bias point of a bipolar transistor, whose β variation is between 100 and 600, being the average value 350 (β is considered a Gaussian distribution), feeding it with resistors with a nominal tolerance of ± 5% and studying the collector current variation using 100 samples.

STATISTICAL ANALYSIS OF A BJT BEHAVIOR IN DC

Now, we are going to study the behavior of a bias circuit, with a bipolar transistor, like the next figure

Circuito de polarización de un BJT

Bias point circuit of a BJT

where the resistors have a ±5% tolerance and the transistor has a β variation between 100 and 600, with a nominal value of 350. Its bias point is  Ic=1,8mA, Vce=3,2V. Making a Monte Carlo analysis, with 100 samples, we can get the next result

Variación de la corriente del BJT en función de las variables aleatorias

BJT current distribution respect to the random variables

 

Seeing the graph form, we can check that the result converges to a Gaussian distribution, being the average value Ic=1,8mA and its tolerance, ±28%. Suppose now that we do the same sweep before processing, in several batches of 100 samples each one. The obtained result is

Variación de la corriente del BJT para varios lotes

BJT current distribution respect several batches

where we can see that in each batch we get a graph which converges to a Gaussian distribution. In this case, the Gaussian distribution has an average value μ=1,8mA and a variance σ²=7%. Thus, we have been able to analyze each process not only like a global statistical analysis but also like a batch. Suppose now that β is a random variable with an uniform distribution function, between 100 and 600. By analyzing only 100 samples, the next graphic is got

Distribución con b uniforme

Results with a BETA uniform distribution

and it can be seen that the current converges to an uniform distribution, increasing the current tolerance range and the probability at the ends. Therefore, we can also study the circuit behaviour when it shows different distribution functions for each variable.

Seeing that, with the Monte Carlo method, we are able to analyze any complex circuit behavior in terms of tolerances, in the same way it will help us to study how we could correct those results. Therefore, in the next posts we shall analyzed deeply this method, increasing the study of its potential and what we can be achieved with it.

CORRECTING THE TOLERANCES

In the simulated circuit, when we have characterized the transistor β like an uniform random variable, we have increased the probability into unwanted current values (at the ends). This is one of the most problematic features, not only on bipolar transistors but also on field effect transistor: the variations of their current ratios. This simple example let see what happens when we use a typical correction circuit for the β variation, like the classic polarization by emitter resistance.

Bias circuit by emitter resistance

Using this circuit and analyzing by Monte Carlo, we can compare its results with the analysis obtained in the previous case, but using 1000 samples. The result is

Resultados con ambos circuitos

Results with both circuits

where we can check that the probability values have increased around 2mA, reducing the probability density at the low values of current and narrowing the distribution function. Therefore, the Monte Carlo method is a method that not only enables us to analyze the behavior of a circuit when subjected to a statistical, but also allow us to optimize our circuit and adjust it to the desired limit values. Used properly, it is a powerful calculation tool that will improve the knowledge of our circuits.

CONCLUSIONS

In this first post, we wish to begin a serie dedicated to Monte Carlo method. In it, we wanted to show the method and its usefulness. As we have seen in the examples, the use of Monte Carlo method provides very useful data, especially with the limitations and variations of the circuit we are analyzing if we know how they are characterized. On the other hand, it allows us to improve it using statistical studies, in addition to setting the standards for the verification of in any production process.

In the next posts we shall go more in depth on the method, by performing a more comprehensive method through the study of a specific circuit of one of my most recent projects, analyzing what the expected results and the different simulations that can be performed using the method of Monte Carlo, like the worst case, the sensitivity, and the post-production optimization.

REFERENCES

  1. Castillo Ron, Enrique, “Introducción a la Estadística Aplicada”, Santander, NORAY, 1978, ISBN 84-300-0021-6.
  2. Peña Sánchez de Rivera, Daniel, “Fundamentos de Estadística”, Madrid,  Alianza Editorial, 2001, ISBN 84-206-8696-4.
  3. Kroese, Dirk P., y otros, “Why the Monte Carlo method is so important today”, 2014, WIREs Comp Stat, Vol. 6, págs. 386-392, DOI: 10.1002/wics.1314.

Análisis estadísticos usando el método de Monte Carlo (I)

imagesCuando nos enfrentamos a cualquier diseño electrónico, por lo general disponemos de métodos deterministas que permiten el cálculo de lo que estamos diseñando, de modo que podemos prever los parámetros que vamos a encontrar en la medida física de cualquier dispositivo o sistema. Estos cálculos previos facilitan el desarrollo y normalmente los resultados suelen coincidir en gran medida con la predicción. Sin embargo, sabemos que todo aquello que creemos o fabriquemos siempre está sometido a tolerancias. Y esas tolerancias provocan variaciones en los resultados que muchas veces no se pueden analizar de forma sencilla, sin una herramienta de cálculo potente. En 1944, Newmann y Ulam desarrollaron un método estadístico no determinista que denominaron Método de Monte Carlo. En las siguientes entradas vamos a analizar el uso de este potente método para la predicción de posibles tolerancias en circuitos, sobre todo cuando son fabricados de forma industrial.

En un sistema o proceso, el resultado final es consecuencia de las variables de entrada. Estas generan una respuesta que puede ser determinada tanto si el sistema es lineal como si es no lineal. A la relación entre la respuesta o salida del sistema y las variables de entrada la denominamos función de transferencia, y su conocimiento nos permite evaluar cualquier resultado en función de la excitación de entrada.

Sin embargo, hay que tener en cuenta que las variables de entrada son variables aleatorias, con su propia función de distribución, debido a que están sometidas a procesos estocásticos, aunque su comportamiento es predecible gracias a la teoría de la probabilidad. Por ejemplo, cuando describimos una medida de cualquier tipo, solemos representar su valor nominal o medio, así como el entorno de error asociado en el que esa magnitud medida puede estar. Esto nos permite limitar el entorno en el cual la magnitud es correcta y decidir cuándo la magnitud se comporta de modo incorrecto.

Durante muchos años, después de haber aprendido a transformar con éxito los resultados obtenidos mediante simulación en resultados físicos reales, con comportamientos predecibles y extrayendo conclusiones válidas, me he dado cuenta que en la mayoría de las ocasiones la simulación se reduce a obtener un resultado apetecido, sin profundizar en absoluto en ese resultado. Sin embargo, la mayoría de los simuladores están dotados de algoritmos estadísticos útiles que, correctamente utilizados, permiten al usuario de la aplicación obtener una serie de datos que puede usar para el futuro y permiten predecir el comportamiento de cualquier sistema, o al menos, analizar qué es lo que se puede producir.

Sin embargo, esos métodos que los simuladores incluyen nos suelen ser utilizados. Ya sea por falta de conocimiento de patrones estadísticos, ya sea por desconocimiento de cómo usar esos patrones. Por tanto, en esta serie de entradas vamos a desgranar el método de Monte Carlo que podemos encontrar en un simulador de circuitos e descubrir un potencial importante que es desconocido para muchos de los usuarios de los simuladores de circuitos.

LOS COMPONENTES COMO VARIABLES ALEATORIAS

Los circuitos electrónicos están formados por componentes electrónicos simples, pero que tienen un comportamiento estadístico, debido a los procesos de fabricación. No obstante, los fabricantes de componentes delimitan correctamente los valores nominales y el entorno de error en que se mueven. Así, un fabricante de resistencias no sólo publica sus valores nominales y dimensiones. También publica los entornos de error en los que esa resistencia varía, el comportamiento con la temperatura, el comportamiento con la tensión, etc. Todos estos parámetros, convenientemente analizados, proporcionan una información importante que, bien analizada dentro de una potente herramienta de cálculo como es el simulador, permite predecir el comportamiento de circuito total.

En este caso se va a analizar exclusivamente el entorno de error en el valor nominal. En una resistencia, cuando el fabricante define el valor nominal (en este caso, vamos a suponer 1kΩ) y expresa que tiene una tolerancia de ±5%, quiere decir que el valor de la resistencia puede estar comprendido entre 950Ω y 1,05kΩ. En el caso de un transistor, su ganancia de corriente β puede tomar un valor entre 100 y 600 (por ejemplo, el BC817 de NXP), por lo que puede haber una variación de corriente de colector importante e incontrolable. Por tanto, conociendo estos datos, podemos analizar el comportamiento estadístico de un circuito eléctrico gracias a la rutina de Monte Carlo.

Analicemos primero la resistencia: hemos dicho que la resistencia tiene una tolerancia de ±5%. Entonces, vamos a analizar usando el simulador el comportamiento de esta resistencia usando la rutina de Monte Carlo. A priori, desconocemos qué función densidad de probabilidad tiene la resistencia, aunque lo más habitual es una función de tipo gaussiano, cuya expresión es ya conocida

f_{\mu,\sigma^2}(x)=\dfrac {1}{\sigma \sqrt {2 \pi}}e^{\dfrac {(x-\mu)^2}{\sigma^2}}

donde μ es el valor medio y σ² es la varianza. Analizando con el simulador, mediante el método de Monte Carlo y para 2000 muestras, se puede obtener una representación de la variación del valor nominal de la resistencia, obteniendo un histograma como el que se muestra en la figura siguiente

Distribución de los valores de la resistencia usando el análisis de Monte Carlo

Distribución de los valores de la resistencia usando el análisis de Monte Carlo

El algoritmo de Monte Carlo introduce valor en la variable cuya distribución corresponde a una gaussiana, pero los valores que toma son en todo momento aleatorios. Si esas 2000 muestras se tomasen en 5 procesos de 400 muestras cada uno, seguiríamos teniendo una tendencia a la gaussiana, pero sus distribuciones serían diferentes

Distribuciones gaussianas con varios lotes

Distribuciones gaussianas con varios lotes

Por tanto, trabajando convenientemente con las variables aleatorias, se puede extraer un estudio completo de la fiabilidad del diseño realizado, así como de la sensibilidad que tiene cada una de las variables que se utilizan. En el siguiente ejemplo, vamos a proceder al análisis del punto de operación de un transistor bipolar convencional, cuya variación de β está comprendida entre 100 y 600, con un valor medio de 350 (comprendida β con una distribución gaussiana), polarizado con resistencias con una tolerancia nominal de ±5%, y estudiando la variación de la corriente de colector en 100 muestras.

ANÁLISIS DEL COMPORTAMIENTO ESTADÍSTICO DE UN BJT EN DC

Para estudiar el comportamiento de un circuito de polarización con transistor bipolar, partimos del circuito como el de la figura

Circuito de polarización de un BJT

Circuito de polarización de un BJT

donde las resistencias tienen tolerancias totales de ±5% y el transistor tiene una variación de β entre 100 y 600, con un valor nominal de 350. El punto de operación es Ic=1,8mA, Vce=3,2V. Haciendo el análisis de Monte Carlo para 100 muestras, obtenemos el siguiente resultado

Variación de la corriente del BJT en función de las variables aleatorias

Variación de la corriente del BJT en función de las variables aleatorias

Por la forma de la gráfica, se puede comprobar que el resultado converge a una gaussiana, donde el valor medio predominante es Ic=1,8mA, con una tolerancia de ±28%. Supongamos ahora que hacemos el mismo barrido que antes, en varios lotes de proceso, de 100 muestras cada uno. El resultado obtenido es

Variación de la corriente del BJT para varios lotes

Variación de la corriente del BJT para varios lotes

donde podemos ver que en cada lote tendremos una curva que converge a una gaussiana. En este caso, la gaussiana tiene un valor medio μ=1,8mA y una varianza σ²=7%. De este modo, podemos analizar cada proceso como un análisis estadístico global como por lotes. Supongamos que ahora β es una variable aleatoria con una función de distribución uniforme entre 100 y 600. Analizando sólo para las 100 muestras, se obtiene la curva

Distribución con b uniforme

Distribución con BETA uniforme

y se puede observar que la tendencia de la corriente es a converger a una distribución uniforme, aumentando el rango de tolerancia de la corriente y aumentando la probabilidad en los extremos de su valor. Por tanto, también podemos estudiar cómo se comporta el circuito cuando tenemos distintas funciones de distribución gobernando cada una de las variables.

Visto que, con el método de Monte Carlo podemos analizar el comportamiento en términos de tolerancias de un circuito complejo, también del mismo modo nos ayudará a estudiar cómo podemos corregir esos resultados. Por tanto, a lo largo de las entradas vamos a profundizar cada vez más en el potencial del método y lo que se puede conseguir con él.

CORRIGIENDO LAS TOLERANCIAS

En el circuito básico que hemos utilizado, al caracterizar la β del transistor como una variable uniforme, hemos aumentado la probabilidad de haya posibles valores de corriente que caigan en valores indeseados. Esto es uno de los puntos más problemáticos de los transistores bipolares y de efecto campo, las variaciones de sus ganancias en corriente. Vamos a ver, con un sencillo ejemplo, qué es lo que ocurre cuando usamos un circuito de corrección de la variación de β, como puede ser el circuito clásico de autopolarización por emisor

Circuito con autopolarización por emisor

Circuito con autopolarización por emisor

Usando este circuito, volvemos a hacer un análisis de Monte Carlo y lo comparamos con el análisis obtenido en el caso anterior,pero usando 1000 muestras. El resultado obtenido es

Resultados con ambos circuitos

Resultados con ambos circuitos

donde se puede ver que se ha incrementado la probabilidad en valores en torno a los 2mA, reduciendo la densidad de probabilidad en valores bajos de corriente y estrechando la distribución. Por tanto, el método de Monte Carlo no sólo es un método que nos permite analizar el comportamiento de un circuito cuando se somete a una estadística, sino que nos permitirá optimizar nuestro circuito y ajustarlo a los valores límite deseados. Usado convenientemente, es una potente herramienta de cálculo que mejorará el conocimiento de nuestros circuitos.

CONCLUSIONES

En esta primera entrada de una serie dedicada al método de Monte Carlo, en la que hemos querido presentar el método y su utilidad. Como hemos podido ver en el ejemplo, el uso del método de Monte Carlo proporciona datos de mucha utilidad, sobre todo si deseamos conocer cuáles son las limitaciones y variaciones del circuito que estamos analizando. Por otro lado, nos permite mejorar éste a través de los estudios estadísticos, además de fijar los patrones para la verificación del mismo en un proceso productivo.

En las siguientes entradas profundizaremos más en el método, realizando un estudio más exhaustivo del método a través de un circuito concreto de uno de mis proyectos más recientes, analizando cuáles son los resultados esperados y las diferentes simulaciones que se pueden realizar usando el método de Monte Carlo, como las de caso peor, sensibilidad, y optimización post-producción.

REFERENCIAS

  1. Castillo Ron, Enrique, “Introducción a la Estadística Aplicada”, Santander, NORAY, 1978, ISBN 84-300-0021-6.
  2. Peña Sánchez de Rivera, Daniel, “Fundamentos de Estadística”, Madrid,  Alianza Editorial, 2001, ISBN 84-206-8696-4.
  3. Kroese, Dirk P., y otros, “Why the Monte Carlo method is so important today”, 2014, WIREs Comp Stat, Vol. 6, págs. 386-392, DOI: 10.1002/wics.1314.

 

¡Feliz cumpleaños, Teoría Electromagnética!

maxwell-finHace 150 años, en 1865, el escocés James C. Maxwell publicó “A Dynamical Theory of the Electrodynamic Field”, una Teoría que marcó un hito en el naciente mundo de la Física Moderna, ya que estableció las bases para la unificación de dos campos que, hasta ese momento, se trataban de forma independiente: el Campo Eléctrico y el Campo Magnético. Con esta unificación, Maxwell puso las bases para comprender el comportamiento de los fenómenos electromagnéticos y su propagación, siendo la base hoy día del funcionamiento de nuestras comunicaciones. Desde esta entrada, queremos dar a conocer estas ecuaciones, su significado y su importancia, y rendir homenaje a uno de los científicos más importantes de los últimos tiempos.

No es una casualidad que este año los Físicos celebremos el Año Internacional de la Luz, puesto que fue hace 150 años cuando un físico escocés publicó las bases para la Teoría Electromagnética, marcando un antes y un después en el conocimiento de los fenómenos eléctricos y magnéticos y logrando la primera unificación en una sola Teoría de dos campos que, hasta ese momento, eran tratados de formas diferentes: el Campo Eléctrico y el Campo Magnético.

Hasta este momento, se conocían ciertas interrelaciones entre ambos fenómenos. Conocíamos, a través de la Electrostática, la Ley de Coulomb y el Teorema de Gauss, que el campo eléctrico era generado por cargas que interaccionaban entre ellas, y a través de la Ley de Biot-Savart y la Ley de Ampère, que los campos magnéticos eran generados por corrientes (cargas en movimiento) y que generaban interacciones entre ellos, a través de la fuerza de Lorenz. Sin embargo, todas las leyes y axiomas de los campos de los campos Eléctrico y Magnético se trataban como algo independiente, no había una unificación que mostrase de forma contundente las interrelaciones hasta que Maxwell las unificó.

Al principio se trataba de una veintena de ecuaciones integro-diferenciales, aunque en realidad se podían reducir a las ecuaciones actuales, debido a que Maxwell las escribió para cada eje de coordenadas. Usando el operador diferencial diferencial ∇ y las interrelaciones matemáticas entre las integrales y dicho operador, al final las ecuaciones quedaron descritas tal y como se conocen hoy, tanto en su forma integro-diferencial como en su más popular descripción diferencial vectorial.

Ecuaciones de Maxwell y sus leyes

Ecuaciones de Maxwell y sus leyes

Este conjunto de cuatro ecuaciones establecen la unificación de los campos Eléctrico y Magnético en una nueva Teoría que se llama la Teoría Electromagnética, la primera gran unificación de campos realizada en la Física y una de las más bellas descripciones que existen en la disciplina.

No vamos a ir desgranando una a una las ecuaciones, ya que en varias ocasiones lo hemos hecho en otras entradas, pero uno de los detalles más evidentes que se sacan de las ecuaciones, y que las hace interesantes, es su asimetría. Esta asimetría, debida precisamente a la diferencia entre el comportamiento de ambos campos, se hace patente dos a dos: en la Ley de Gauss de ambos campos, y entre la Ley de Faraday y la de Ampère.

Asimetría de la Ley de Gauss

La Ley de Gauss o Teorema de la Divergencia está relacionada con las fuentes y sumideros de las líneas de fuerza del campo, y muestra hacia dónde divergen estas líneas de interacción. En el caso del campo eléctrico, las líneas divergen hacia las cargas, que son las fuentes o sumideros de las líneas de campo. Gráficamente se puede expresar como

350px-LineasCampo

Divergencia de las líneas de capo eléctrico a las cargas

Por tanto, las líneas del campo eléctrico nacen y mueren en las cargas.

En el caso del campo magnético podemos observar que la divergencia es nula, esto es, no hay fuentes o sumideros a los cuales las líneas de campo magnético diverjan. Por tanto, no existen los monopolos magnéticos. El campo magnético rota sobre el origen del mismo, que lo establece la Ley de Ampère y que son las corrientes ocasionadas por cargas en movimiento. Y su expresión más gráfica es

Campo magnético rotando alrededor de una línea de corriente

Campo magnético rotando alrededor de una línea de corriente

Esta asimetría muestra que ambos campos son diferentes en su origen, lo que se muestra muy claramente cuando los campos son estáticos. No obstante, la no dependencia temporal de estas ecuaciones las hace válidas no sólo para los campos estáticos, sino también para los campos dinámicos. Es la otra asimetría, la de las leyes de Faraday y Ampère, la que introduce, además, el dominio temporal.

Asimetría de las Ley de Faraday y Ampère

Las leyes del campo están relacionadas con los campos dinámicos, aquellos que varían de forma temporal. La primera dice que la variación de un flujo magnético con el tiempo genera una fuerza electromotriz, o llanamente, que la variación de un campo magnético genera un campo eléctrico. Es el principio de las dinamos y los generadores eléctricos, en los que, al variar el flujo de un campo magnético mediante medios mecánicos, son capaces de generar un campo eléctrico.

En la Ley de Faraday también está presente la Ley de Lenz, que indica que ese campo eléctrico tiende a oponerse a la variación del campo magnético, y por eso el signo negativo en la expresión.

La segunda, la Ley de Ampère, parte de la ley de la magnetostática, que dice que la circulación de un campo magnético a través de una línea cerrada es proporcional a la corriente que encierra ese contorno. Esta Ley de la Magnetostática fue generalizada por Maxwell al introducir los campos eléctricos variables con el tiempo, mostrando un resultado que, en su forma diferencial, guarda similitud con la Ley de Faraday, salvo que introduce la densidad de corriente para que se mantenga coherente con la Ley de Ampère de la Magnetostática. La conclusión, por tanto, es que los campos eléctricos variables con el tiempo generan campos magnéticos y los campos magnéticos variables con el tiempo, eléctricos.

A pesar de la asimetría de las expresiones, que es la que genera, bajo mi punto de vista, la belleza de la descripción del escocés, de ellas se deduce una de las conclusiones más importantes de la Teoría Electromagnética, y es que los campos electromagnéticos son ondas que se propagan en cualquier medio material dieléctrico, no necesitando de soportes físicos, a diferencia de otros tipos de ondas como las acústicas, que presentan características similares en la formulación de los campos asociados. Esta conclusión es la que nos permite asociar fenómenos como la propagación luz, que presenta una dualidad partícula-onda ya que es un campo electromagnético formado por partículas llamadas fotones. Y al poder propagarse en el vacío, puede transmitir de un lugar a otro la información, que en el caso de la luz, es la visión de un fenómeno que haya ocurrido en el Universo a través de su observación.

Los campos electromagnéticos como ondas que se propagan en el espacio

De resolver las ecuaciones, se puede llegar a las ecuaciones de onda de Helmholz, tanto para el campos eléctrico como para el magnético.

{\nabla}^2\vec{E}-{\mu_0}{\epsilon_0}\dfrac{\partial^2 \vec{E}}{\partial t^2}-{\mu_0}{\sigma}\dfrac{\partial \vec{E}}{\partial t}=0

{\nabla}^2\vec{B}-{\mu_0}{\epsilon_0}\dfrac{\partial^2 \vec{B}}{\partial t^2}-{\mu_0}{\sigma}\dfrac{\partial \vec{B}}{\partial t}=0

En estas ecuaciones la asimetría que presentan las ecuaciones de Maxwell desaparece, y se pueden resolver como una onda propagándose por un medio material, incluido el vacío, en el que la velocidad de propagación es la velocidad de la luz, c, siendo ésta la máxima velocidad a la que se puede propagar la onda.

Resolviendo esta ecuación de onda, obtendremos la forma en la que se propaga un campo electromagnético en el medio, como una onda compuesta por un campo eléctrico y un campo magnético variables con el tiempo.

El campo electromagnético como onda de propagación

El campo electromagnético como onda de propagación

donde en azul tenemos el campo eléctrico, en rojo el campo magnético y en negro la dirección de propagación de la onda.

Influencia de la Teoría Electromagnética en nuestras vidas

Es evidente que la Teoría Electromagnética de Maxwell ha tenido una influencia notable en nuestras vidas, afectando en muchos aspectos, pero donde más influencia ha tenido es en la comunicación. Los seres humanos necesitamos comunicarnos, y la Teoría Electromagnética de Maxwell nos abre las puertas a un campo en el que las comunicaciones casi no tienen límites. Las comunicaciones modernas no se podrían entender sin esta notable contribución del escocés, y este año no celebraríamos el Año Internacional de la Luz si no hubiese existido todavía esta unificación de campos. Hoy día la Teoría Electromagnética forma parte habitual de nuestras vidas y costumbres, a través de las comunicaciones a larga distancia, ya sean inalámbricas, por cable o por fibra óptica. Recibimos imagen y sonido gracias a ella, así como podemos comunicarnos a larga distancia gracias a la transmisión por radio y enviar datos a cualquier parte del mundo. Es una de las cuatro interacciones de la naturaleza, junto a la gravedad y a las interacciones fuerte y débil del mundo atómico, y por tanto, por ese motivo podemos decir con orgullo ¡Feliz cumpleaños, Ecuaciones de Maxwell!

Referencias

  1. John R. Reitz, Frederick J. Milford, Robert W. Christy, “Foundations of Electromagnetic Theory”, Addison-Wesley Publishing Company, Inc., Massachusetts (USA), 1979

Influencia de los campos electromagnéticos en la dinámica de los fluidos

la_caza_del_submarino_rusoAunque parezca lo contrario, en esta entrada no vamos a hablar de novelas de espías, pero sí vamos a usar un argumento de la trama de una conocida novela de espionaje para presentar la teoría magnetohidrodinámica. Ésta es una disciplina de la física, que forma parte de la teoría de campos y analiza el movimiento de fluidos con carga eléctrica en presencia de un campo electromagnético y sus posibles aplicaciones. Comprendiendo los principios de la dinámica de fluidos, llegaremos a las ecuaciones que constituyen la base de la teoría, sus conclusiones y su actual utilización.

Los que conozcan la trama de la novela de Tom Clancy “The hunt of Red October”, sabrán que trata sobre la deserción de un submarino soviético de la clase Typhoon, dotado de un sistema de propulsión silencioso y difícilmente detectable por el sonar. En la novela, se le describe como “propulsión magnetohidrodinámica” y consiste en generar flujo de corriente hidráulica a lo largo de la nave usando campos magnéticos. Este flujo permite su desplazamiento sin usar los motores convencionales, aprovechando las características conductivas del agua salada. Este sistema de propulsión silenciosa convertía a la nave en algo letal y peligroso de verdad, puesto que podría acercarse a la costa de los EE.UU. sin ser detectado y lanzar un ataque con cabezas nucleares sin que nadie lo pudiese evitar. Esta es la trama, pero, ¿cuánto hay de cierto en la misma? ¿Existe un método de propulsión o un sistema que provoque el movimiento de un fluido por la presencia de un campo electromagnético? ¿Y a la inversa? ¿Podemos generar un campo electromagnético sólo usando el movimiento de un fluido cargado?

Aunque pueda parecer que, al tratarse de una novela de espías y acostumbrados como estamos a la tendencia de la ficción a crear ciertas bases argumentales, a veces ilusorias, para dotar de cierto dramatismo a la trama, lo cierto es que la teoría magnetohidrodinámica es muy real. Tanto, que el primer efecto destacable de la misma lo podemos comprobar simplemente con la presencia del campo magnético terrestre. Este es fruto del movimiento del núcleo interno de la tierra, compuesto de una capa de hierro líquido (fluido) que envuelve a una gran masa de hierro sólido. Este núcleo , que se mueve acompasado por la rotación de la Tierra, tiene cargas en movimiento que generan una corriente eléctrica, y esa corriente eléctrica genera el campo magnético que protege a la Tierra de los embates de partículas de alta energía que proceden de nuestra estrella, el Sol.

El propio Sol, que es una nube de gas en estado de plasma, tiene poderosos campos magnéticos que determinan el movimiento de las partículas que constituyen el plasma en su interior. Por tanto, la teoría magnetohidrodinámica que usa Clancy en esa trama es muy real. Vamos entonces a desvelar sus bases.

DINÁMICA DE FLUIDOS: LAS ECUACIONES DE NAVIER–STOKES

Un fluido es un medio material continuo formado por moléculas donde sólo hay fuerzas de atracción débil, que se encuentra en uno de estos tres estados de la materia: líquido, gaseoso o plasma. La dinámica de fluidos es la parte de la física que se ocupa del estudio del movimiento de estos medios en cualquiera de estos estados, siendo la masa del fluido la parte que se desplaza de un punto a otro.

Del mismo modo que en campos electromagnéticos definíamos la corriente eléctrica como la variación de la carga con el tiempo, en los fluidos hablaremos de un flujo de corriente ψ que es la variación de la masa M del fluido respecto del tiempo.

{\psi}=\dfrac{dM}{dt}=\dfrac{d}{dt} \displaystyle \int_V {\rho}_M dV

Si tomamos una superficie donde hay ni partículas de masa mi que se mueven a una velocidad vi, podemos definir una densidad de flujo de corriente ℑM, que se expresa como

{\vec{\mathcal J}}_M=\displaystyle \sum_i N_i  m_i  {\vec {v}}_i=N  m  {\vec {v}}=M  {\vec {v}}

d{\psi}=\left( \displaystyle \sum_i N_i  m_i  {\vec {v}}_i \right) \vec{n} dA={\vec{\mathcal J}}_M  \vec{n}  dA

Flujo de corriente debida a partículas de masa m

Flujo de corriente debida a partículas de masa m

Vamos a considerar, como se muestra en la figura, que nuestro fluido es un medio material que tiene todas las partículas de la misma masa, por lo que el producto ni⋅mi se puede extraer del sumatorio, quedando entonces una velocidad v  que es la suma vectorial de todas las velocidades de las partículas del fluido.

La relación entre el flujo de corriente y la densidad de flujo de corriente es una integral a lo largo de una superficie S. Si integramos el flujo de corriente total en una superficie cerrada, por la conservación de la masa, tendremos que es igual  es la variación de la masa con respecto al tiempo, y siendo la densidad la masa por unidad de volumen, podemos escribir que

{\psi}=- \displaystyle \oint_S {\vec{\mathcal J}}_M \vec{n}  dA =\displaystyle \int_V \dfrac {d{\rho}_M}{dt} dV

Como este flujo de corriente se opone a la variación de la masa respecto del tiempo, y la masa es la integral de volumen de la densidad del fluido ρMy aplicando el teorema de la divergencia, podemos escribir esta expresión en su forma diferencial

-\vec{\nabla} \vec{J}_M = \dfrac {d{\rho}_M}{dt}

que es la ecuación de continuidad de un fluido y que representa la conservación de la masa neta dentro del fluido. Esta es una de las ecuaciones de Navier-Stokes, primordial para comprender el movimiento de las partículas del fluido.

Para la otra ecuación, debemos de recurrir a la derivada sustancial. Esta es una descripción que incluye no sólo la variación con respecto al tiempo de la magnitud física del fluido, sino que además incluye la variación de la misma respecto de la posición. La expresión de la derivada sustancial es

\dfrac {d}{dt}(*)=\dfrac {\partial}{\partial t}(*)+\vec{v} \vec{\nabla}(*)

donde v es la velocidad del fluido y  el operador diferencial que ya vimos en la entrada sobre radioenlaces. Como el momento lineal del fluido se conserva, cuando interviene la fuerza de la gravedad , actúa además una presión P en sentido contrario al movimiento en el fluido y contraponiéndose a las deformaciones una viscosidad μobtenemos que

{\rho}_M  \dfrac {d \vec{v}}{dt}=\vec{F}-\vec{\nabla}P+{\mu} \left( \dfrac {1}{3} \vec{\nabla}  \left(\vec{\nabla}  \vec{v} \right) + {\nabla}^2 \vec{v} \right)

\dfrac {\partial \vec{v}}{\partial t}+ \left( \vec{v} \vec{\nabla} \right) \vec{v} + \dfrac {1}{{\rho}_M} \vec{\nabla}P- \dfrac {\mu}{{\rho}_M}\left( \dfrac {1}{3} \vec{\nabla} \left(\vec{\nabla} \vec{v} \right) + {\nabla}^2 \vec{v} \right)=\vec{g}

Esta es la ecuación del movimiento de un fluido, y es no lineal debido a la derivada sustancial. Por tanto, en un fluido intervienen no sólo las fuerzas aplicadas en el fluido, sino también la presión de éste y su viscosidad. Si el fluido no presentase viscosidad, y aplicando la derivada sustancial  a la ecuación anterior, podemos obtener un caso particular

\dfrac {\partial \vec{v}}{\partial t}+ \left( \vec{v} \cdot \vec{\nabla} \right) \vec{v} + \dfrac {1}{{\rho}_M} \vec{\nabla}P=\vec{g}

que nos define la ecuación del movimiento de un fluido no viscoso.

DINÁMICA DE FLUIDOS: MAGNETOHIDRODINÁMICA

Si el fluido presenta partículas cargadas y aplicamos un campo electromagnético, con componentes E y B, la fuerza que interviene en este caso no es la gravedad, sino la fuerza de Lorenz que aplica el campo magnético

\vec{F}=\vec{J} \times \vec{B}=\dfrac {\left( \vec{B} \cdot \vec{\nabla} \right) \vec{B}}{{\mu}_0}-\vec{\nabla} \left(\dfrac {B^2}{2{\mu}_0} \right)

donde J es la densidad de corriente eléctrica en el fluido y B el campo magnético aplicado. En la expresión desarrollada, obtenida a partir del desarrollo de la Ley de Ampere y una de las identidades del operador diferencial , obtenemos dos términos. El primero es una fuerza de tensión magnética mientras que el segundo término se asemeja a una presión magnética producida por la densidad de energía magnética del campo. Sustituyendo F en la expresión obtenida en el apartado anterior y considerando un fluido no viscoso, tendremos que

\dfrac {\partial \vec{v}}{\partial t}+ \left( \vec{v} \cdot \vec{\nabla} \right) \vec{v} + \dfrac {1}{{\rho}_M} \vec{\nabla} \left(P+\dfrac {B^2}{2{\mu}_0} \right)=\dfrac {\left( \vec{B} \cdot \vec{\nabla} \right) \vec{B}}{{\rho}_M {\mu}_0}

Teniendo en cuenta que, según las ecuaciones de Maxwell, la divergencia del campo magnético es nula, si consideramos un campo magnético unidireccional, las variaciones espaciales de la divergencia son perpendiculares al campo, por lo que la fuerza de tensión magnética se anula y la expresión anterior queda

\dfrac {\partial \vec{v}}{\partial t}+ \left( \vec{v} \cdot \vec{\nabla} \right) \vec{v} + \dfrac {1}{{\rho}_M} \vec{\nabla} \left(P+\dfrac {B^2}{2{\mu}_0} \right)=0

Si el fluido está en estado de plasma, tenemos que la Ley de Ohm se puede escribir como

\vec{E}+\vec{v} \times \vec{B}=0

debido a que en este estado la conductividad tiende a ser infinita y para mantener el flujo de corriente, la fuerza aplicada debe ser lo más baja posile. De este modo, la Ley de Faraday queda como

\dfrac {\partial \vec{B}}{\partial t}=\vec{\nabla} \times \left( \vec{\nabla} \times \vec{B} \right)

CONCLUSIONES DE LAS ECUACIONES

Como hemos podido comprobar, la magnetohidrodinámica es, en realidad, una consecuencia de aplicar campos electromagnéticos a fluidos que poseen carga eléctrica, y en esto se basaba Clancy para “propulsar” su Octubre Rojo. No obstante, los intentos de generar un propulsor naval de estas características se han quedado en prototipos construidos en los años 60 puesto que las inducciones magnéticas que requerían eran elevadas (del orden de más de 5 Tesla) en compartimientos muy voluminosos (centenares de m3). Por tanto, el submarino de la clase Typhoon cumplía con las exigencias de proporcionar el debido dramatismo a la novela, sin despreciar por ello la base científica en la que se basaba, debido al tamaño de este tipo de naves, considerados por los EE.UU. como colosos de las profundidades debido al desplazamiento de toneladas que eran capaces de propulsar.

No quiere decir que la aplicación de la magnetohidrodinámica esté actualmente aparcada. Debido a ella, los astrofísicos han logrado generar modelos basados en estas ecuaciones para determinar las trayectorias de las partículas en el Sol y predecir erupciones solares. Y los geofísicos, comprender mejor la estructura de los núcleos de los planetas.

Además, estas técnicas son utilizadas desde hace años también en metalurgia: a medida que calentamos un metal transformándolo en un fluido, incrementamos notablemente su conductividad, de modo que se puede aplicar la Ley de Ohm para los plasmas. Esto evita, en los procesos de fundición y generación de aleaciones, que el metal entre en contacto con el crisol y adquiera escoria, mejorando notablemente la calidad de la aleación. Es el principio de los altos hornos eléctricos, que vinieron a sustituir a los antiguos que usaban carbón.

También se han encontrado aplicaciones para generar energía eléctrica a partir del movimiento de un gas en presencia de un ampo magnético, así como el confinamiento del estado de plasma para los reactores de energía nuclear de fusión. Por no hablar de los experimentos realizados en el LCH, en Suiza. No obstante, se sigue teniendo el problema de la gran inducción magnética generada y el volumen necesario para mantener los plasmas.

Sin embargo, es una pequeña parte de todo lo que se podría llegar a conseguir con mejor tecnología. A medida que se desarrolle ésta, la magnetohidrodinámica proporcionará mejores aplicaciones.

References

  1. J. R. Reitz, F. J. Milford, R. W. Christy, “Foundations of the Electromagnetic Theory”; Addison-Wesley Publishing Company, Inc, Massachusetts (U.S.A.), 1979
  2. H. Alfvén, “Existence of electromagnetic-hydrodynamic waves“. Nature 150: 405-406, 1942

 

 

Estudio del comportamiento de un material piezoeléctrico (II)

En la entrada anterior habíamos estudiado el fenómeno piezoeléctrico a partir de las ecuaciones constitutivas que relacionan los campos eléctricos y mecánicos generados en el material. Los materiales piezoeléctricos se utilizan, gracias a este comportamiento, como componentes electrónicos con muy alta calidad. Su uso en filtros SAW, en resonadores BAW, en cristales de Cuarzo, para zumbadores e incluso como cargadores en Energy Harvesting hacen necesario, cada vez más, tener un modelo de circuito equivalente que defina correctamente el componente y su respuesta electroacústica. En esta entrada vamos a presentar un modelo, extraído en los años 40-50 por W.P. Mason y que sintetiza con bastante precisión los fenómenos electroacústicos tanto en su modelo lineal como no lineal.

MODELO DE MASON: EXTRACCIÓN

piezoelectrico

Esquema de un piezoeléctrico

Hemos dicho que un piezoeléctrico es un material electromecánico en el que aparecen fuerzas mecánicas cuando se le aplican fuerzas eléctricas y, recíprocamente, eléctricas cuando se aplican fuerzas mecánicas. La figura muestra un esquema dimensional de un material piezoeléctrico.

En el piezoeléctrico aplicamos un potencial eléctrico E⋅δz, y en ambas superficies del piezoeléctrico aparecen sendas tensiones T1 y T2, en cada una de las superficies del material. Aparecen también las velocidades de desplazamiento v1 y v2, que están relacionadas con el desplazamiento u a través de

v=\dfrac {\partial u}{\partial t}

Por último, aparece una corriente eléctrica I en los electrodos del potencial eléctrico. Por último, las magnitudes de A y d son la superficie en m2 y el espesor del dieléctrico en m.

En la entrada anterior estudiamos el comportamiento piezoeléctrico a partir de sus ecuaciones constitutivas. Recordando entonces cómo se escribían estas ecuaciones, teníamos

T=c^ES-e_{33}E

D=e_{33}S+{\epsilon}^SE

Se tiene que cumplir, además, la conservación de la energía a través de la ecuación de Lipmann

{\left[ \dfrac {\partial D}{\partial S} \right]}_E=-{\left[ \dfrac {\partial T}{\partial E} \right]}_S

Combinando adecuadamente estas ecuaciones, habíamos obtenido una ecuación de onda definida por

\left(\rho \dfrac {{\partial}^2}{\partial t^2} -c^D \dfrac {{\partial}^2}{\partial z^2} \right)u=0

que corresponde a una onda de propagación.

Utilizando la expresión que liga v con la variación temporal de u, podemos escribir la 2ª Ley de Newton como

\dfrac {\partial}{\partial z}(-T)=-\rho \dfrac {\partial v}{\partial t}

Recordando, además, que la deformación S derivaba del gradiente de u, calculamos la variación de S con respecto al tiempo y obtenemos su relación con el gradiente de v. Expresándolo para un sistema unidimensional en el eje z, obtenemos

\dfrac {\partial S}{\partial t}=\dfrac {{\partial}^2 u}{\partial z \partial t}=\dfrac {\partial v}{\partial z}

y despejando S de las ecuaciones constitutivas, obtenemos

\dfrac {\partial v}{\partial z}=-\dfrac {1}{c^D}\dfrac {\partial}{\partial t} \left( -T-\dfrac {e_{33}}{{\epsilon}^S}D \right)

Escalamos ahora las ecuaciones, multiplicando por A  los términos de ambas ecuaciones, y agrupándolas, obtenemos

\dfrac {\partial}{\partial z}(-A \cdot T)=-\rho \dfrac {\partial A \cdot v}{\partial t}

\dfrac {\partial A \cdot v}{\partial z}=-\dfrac {1}{c^D}\dfrac {\partial}{\partial t} \left( -A \cdot T\right)-\dfrac {1}{c^D}\left( -\dfrac {e_{33}}{{\epsilon}^S}A \cdot D \right)

Si comparamos este resultado con las ecuaciones del Telegrafista que define una línea de transmisión para las ondas electromagnéticas, podemos comprobar que son similares. La primera relaciona la variación espacial de la tensión -A·T con la variación temporal de la corriente A·v, y correspondería a una inducción por unidad de longitud similar a la de un elemento diferencial de una línea de transmisión.

En la segunda ecuación, que relaciona la variación espacial de la corriente A·v, con respecto a una variación temporal de una tensión, representa una capacidad por unidad de longitud similar a la de la línea de transmisión. Sin embargo, en el segundo término de la ecuación, tenemos una dependencia con la tensión -A·T, que sería una línea de transmisión convencional, y otra dependencia con el desplazamiento eléctrico D. Esa dependencia se representa mediante una línea de transmisión flotante como la que se muestra en la figura siguiente.

linea_t

Modelo acústico del piezoeléctrico, en línea de transmisión, a partir de las ecuaciones del Telegrafista

De este modo ya tenemos asemejada la parte acústica a una línea de transmisión definida por los campos que actúan en las ecuaciones constitutivas.

Sin embargo, esta línea no está del todo completa, ya que hay que incluir el efecto de los electrodos, aislando los campos acústicos de los campos eléctricos. El término que relaciona la variación espacial de A·v con el desplazamiento D puede ser acoplado a través de un transformador ideal N:1, como se muestra en la figura

Acoplamiento de la parte acústica y la eléctrica mediante un transformador N:1

Acoplamiento de la parte acústica y la eléctrica mediante un transformador N:1

y la relación de N se puede calcular por

N=-\dfrac {e_{33}}{d}A

Vamos ahora a estudiar la corriente I. Esta corriente se produce cuando se aplica una tensión E⋅δz en los electrodos del piezoeléctrico. Al aplicar esa tensión, generamos una polarización P, debido al carácter dieléctrico del material. Del mismo modo, sabemos que la corriente I es una variación de la carga Q, y que sólo se producía variación de la carga superficial σ del piezoeléctrico, y que ésta es debida a la polarización P, no variando la carga volumétrica, por lo que

I=\dfrac {\partial Q}{\partial t}=A \dfrac {\partial \sigma}{\partial t}=A \dfrac {\partial P}{\partial t}

y como a la polarización P se opone el desplazamiento eléctrico D para mantener el campo electrico E, obtenemos que

I=-A \dfrac {\partial D}{\partial t}

Estudiamos ahora el potencial E⋅δz aplicado en los electrodos. Usando las ecuaciones constitutivas, obtenemos que el potencial es

{\delta}V=E \cdot {\delta}z=-\dfrac {1}{{\epsilon}^S} \left( {e_{33}S-D} \right) \cdot {\delta}z

Derivando esta expresión con respecto al tiempo, obtenemos

\dfrac {\partial ({\delta}V)}{\partial t}=-\dfrac {1}{{\epsilon}^S} \left( {e_{33} \dfrac {\partial S}{\partial t}-\dfrac {\partial D}{\partial t}} \right) \cdot {\delta}z-\dfrac {1}{{\epsilon}^S} \left( {e_{33} \dfrac {\partial v}{\partial z}-\dfrac {I}{A}} \right) \cdot {\delta}z=\dfrac {\partial ({\delta}V_1)}{\partial t}+\dfrac {\partial ({\delta}V_2)}{\partial t}

Estudiemos ahora los términos en δV1 y  δV2. En el término en δV1 podemos obtener la expresión

I=-\dfrac {{\epsilon}^S A}{{\delta}z} \dfrac {\partial ({\delta}V_2)}{\partial t}=-C_o \dfrac {\partial ({\delta}V_2)}{\partial t}

y es la corriente que fluye a través de un condensador de valor CO , en paralelo con la tensión aplicada. Mientras, el término en δV2 se puede relacionar con la corriente que circula en la parte acústica a través de transformador, siendo Iprim la corriente que circula por el devanado primario del transformador. Usando las relaciones del transformador, podemos encontrar la relación de dicha corriente con esta tensión a través de

-\dfrac {{\delta}z}{e_{33}} \dfrac {\partial \left( I_{prim} \right)}{\partial z}=-\dfrac {{\epsilon}^S A}{e_{33}{\delta}z} \dfrac {\partial ({\delta}V_2)}{\partial t}

I_{prim}=- \left( -\dfrac {{\epsilon}^S A}{{\delta}z} \right) \dfrac {\partial ({\delta}V_2)}{\partial t}=-(-C_o) \dfrac {\partial ({\delta}V_2)}{\partial t}

Tenemos que hacer la consideración de que el peso de la tensión δV1>>δV2 , ya que al calcular la relación de transformación en el transformador hemos supuesto que es E⋅δz=δV, por lo que δV1δVδV20. De este modo, la corriente del primario es una corriente que circula a través de una capacidad negativa de valor CO.

Usando estos parámetros, deducidos de las ecuaciones constitutivas, es posible hacer un modelo completo del circuito equivalente de un piezoeléctrico, que se puede ver en la figura siguiente

mason_model

Circuito equivalente de Mason de un piezoeléctrico

CONDICIONES DE CONTORNO

Cualquier medio material está dentro de otros medios materiales (aire, agua, substratos semiconductores, metales, etc), y todos los medios materiales propagan ondas acústicas. Por tanto, así como en electromagnetismo definimos una impedancia de carga eléctrica sobre la que se transfiere la energía entregada desde el generador eléctrico, podemos definir una resistencia de carga acústica, que es donde se transfiere la energía acústica de la deformación. Esta resistencia de carga acústica está relacionada con la impedancia acústica del medio, y se transforma en una resistencia eléctrica a través de la expresión

R_L=Z_0 A= \rho v^DA

Por ejemplo, el aire tiene una impedancia acústica de 471 Rayls, así que para un piezoeléctrico AlN, con una superficie de 10.000μm2, si ambas superficies estuviesen en contacto con el aire, las impedancias de carga a conectar en los puertos A·T1 y A·T2 serían iguales y valdrían 4,71μΩ, lo que vendría a ser como colocar un cortocircuito en ambos puertos.

En el caso de que uno de los medios fuese aire y el otro, silicio, el silicio tiene una impedancia acústica de 8,35·105 Rayls, en el puerto del silicio habría que poner 8,35mΩ.

Hay que notar que, aunque la impedancia obtenida sea baja. no es estrictamente un cortocircuito. De hecho, al aire, que es el que más baja impedancia presenta, es al que consideramos un cortocircuito, mientras que el resto de materiales presentan impedancias acústicas más elevadas.

También es posible que tengamos un material compuesto de varios espesores de materiales, siendo uno de ellos piezoeléctrico, mientras que los demás son conductores o aislantes. Cuando esto ocurre, cada material puede ser representado por una línea de transmisión de igual modo que el piezoeléctrico. Por ejemplo, si el piezoeléctrico está encapsulado entre dos materiales diferentes, como el wolframio (W) y el molibdeno (Mo), y el wolframio está en contacto con el aire y el molibdeno con silicio, habría que añadir sendas líneas de transmisión entre las cargas y el piezoeléctrico, como se muestra en la figura siguiente

piezo_total

 

NO LINEALIDAD EN LOS MATERIALES: EL MODELO NO LINEAL DE MASON

En las condiciones de trabajo habituales de los piezoeléctricos, el funcionamiento debe de ser lineal. Sin embargo, los materiales presentan limitaciones que hay que tener en cuenta a la hora de trabajar con tensiones elevadas. Estas no linealidades introducen frecuencias espurias que reducen la calidad de la señal. Si estamos usando estos materiales en filtros de recepción, las no linealidades pueden representar un problema cuando una señal interferente de valor elevado atraviesa el material.

El piezoeléctrico es un resonador de muy alto factor de calidad. Traducido a parámetros discretos, se comporta como el circuito de la figura

Resonador equivalente de un piezoeléctrico

Resonador equivalente de un piezoeléctrico

La impedancia del resonador se puede representar en función de la frecuencia, obteniendo una gráfica similar a

impedancia

Impedancia del resonador en función de la frecuencia

El modelo, para bajos potenciales eléctricos, responderá correctamente de forma lineal. Sin embargo, a medida que aumentamos el valor del potencial eléctrico aplicado, empiezan a aparecer condiciones no lineales que limitarán su uso. Estas condiciones no lineales afectan, sobre todo, a las distorsiones de 2º y 3er orden, que son las que pueden afectar en mayor medida sobre la señal útil.

Una forma muy efectiva de simular no linealidades en circuitos eléctricos es el uso de las series de Volterra, una variante de los polinomios de Taylor en el que la respuesta depende en todo momento de los valores de los parámetros de entrada, incluyendo efectos de “memoria”, mediante acumulación de energía, de las capacidades e inducciones.

Como en las series de Taylor, las series de Volterra pueden ser truncadas en aquellos ordenes que sean superiores al que se considera dominante, por lo que nuestro modelo, considerando dominantes sobre todo el 2º y 3er orden de distorsión, puede truncarse a partir del 4º orden .

La distorsión afectará tanto al campo eléctrico como a la tensión mecánica. Las ecuaciones constitutivas, incluyendo estos efectos no lineales, quedarán descritas como

T=c^ES-e_{33}E+{\Delta}T

D=e_{33}S+{\epsilon}^SE+{\Delta}D

siendo ΔT un polinomio de 3er orden que se expresa mediante la suma de 2 términos ΔT2T3, donde el subíndice indica que el polinomio es de 2º o de 3er orden. El caso de ΔD es similar.

Los polinomios que ΔT2, ΔT3, ΔD2 yΔD3 se muestran a continuación:

{\Delta}T_2=\dfrac {1}{2}{\delta}_3 c^E S^2-{\delta}_1 e_{33} S E +\dfrac {1}{2}{\delta}_2 {\epsilon}^S E^2

{\Delta}T_3=\dfrac {1}{3}{\gamma}_4 c^E S^3-{\gamma}_1 e_{33} S^2 E+{\gamma}_2 {\epsilon}^S S E^2 +\dfrac {1}{3}{\gamma}_2 \dfrac {{\epsilon}^S e_{33}}{c^E} E^3

{\Delta}D_2=\dfrac {1}{2}{\delta}_1 e_{33} S^2-{\delta}_2 {\epsilon}^S S E +\dfrac {1}{2}{\delta}_4 \dfrac {{\epsilon}^S e_{33}}{c^E} E^2

{\Delta}D_3=\dfrac {1}{3}{\gamma}_1 e_{33} S^3-{\gamma}_2 {\epsilon}^S S^2 E-{\gamma}_3 \dfrac {{\epsilon}^S e_{33}}{c^E} S E^2 +\dfrac {1}{3}{\gamma}_5 \dfrac {({\epsilon}^S)^2}{c^E} E^3

y además, se sigue teniendo que cumplir la ecuación de Lipmann para la conservación de la energía.

Las series que definen el modelo no lineal se pueden introducir en el modelo lineal de Mason a través de fuentes de tensión dependientes, tanto en la zona eléctrica como en la zona acústica. A dichas fuentes las denominamos VC y TC y están situadas, dentro del modelo, en la entrada eléctrica (caso de VC) y en línea común de la corriente de secundario (caso de  TC), tal y como se muestra en la figura.

Modelo de Mason con las fuentes no lineales

Modelo de Mason con las fuentes no lineales

Estas fuentes se derivan de las ecuaciones constitutivas del mismo modo que hemos derivado el modelo lineal, y se obtienen sus expresiones, que son

T_C=A \left( \dfrac {e_{33}}{{\epsilon}^S}{\Delta}D+{\Delta}T \right)

V_C=\dfrac {d}{{\epsilon}^S}{\Delta}D

Con estas expresiones en el modelo de Mason, tenemos un modelo equivalente no lineal de un material piezoeléctrico, que incluye los efectos de 2º y 3er orden de distorsión, y podemos estudiar el comportamiento de un componente fabricado con este tipo de materiales en presencia de señales interferentes.

CONCLUSIÓN

En esta entrada hemos querido presentar un modelo eléctrico útil para representar un material piezoeléctrico, extraído a partir de las ecuaciones constitutivas. Esto nos ha permitido llegar al modelo que W.P. Mason obtuvo en los años 40, y entender cómo realizó la extracción de los parámetros del modelo.

No sólo hemos obtenido el modelo de Mason, sino que hemos parametrizado un modelo que pueda representar las variaciones no lineales a partir de las series de Volterra, que nos permitirán realizar un modelo no lineal que incluya los efectos de 2º y 3er orden de distorsión, y poder predecir la respuesta de un dispositivo de estas características en condiciones de señales interferentes.

En la próxima entrada vamos a proceder a estudiar el modelo en un simulador, mostrando cómo se realiza un modelo equivalente del piezoeléctrico incluyendo los parámetros no lineales, describiremos un método de medida para extraer los parámetros no lineales y mostraremos los resultados obtenidos mediante simulación.

REFERENCIAS

  1. W.P. Mason, Electromechanical Transducers and Wave Filters”, Princeton NJ, Van Nostrand, 1948
  2. J. F. Rosenbaum, “Bulk Acoustic Wave Theory and Devices”, Artech House, Boston, 1988.
  3. M. Redwood, “Transient performance of a piezoelectric transducer”, J. Acoust. Soc. Amer., vol. 33, no. 4, pp. 527-536, April 1961.
  4. R. Krimholtz, D.A. Leedom, G.L. Mathaei, “New Equivalent Circuit for Elementary Piezoelectric Transducers”, Electron. Lett. 6, pp. 398-399, June 1970.
  5. Y. Cho and J. Wakita, “Nonlinear equivalent circuits of acoustic devices”, Proc. IEEE Ultrason. Symp., Nov. 1993, vol. 2, pp. 867–872.
  6. C. Collado, E. Rocas, J. Mateu, A. Padilla, and J. M. O’Callaghan, “Nonlinear Distributed Model for BAW Resonators”, IEEE Trans. On Microwave Theory and Techniques, vol. 57, no. 12, pp. 3019-3029, Dec. 2009.
  7. E. Rocas, C. Collado, J.C. Booth, E. Iborra, and R. Aigner, “Unified Model for Bulk Acoustic Wave Resonators’ Nonlinear Effects”, Proc. 2009 IEEE Ultrasonics Symposium, pp. 880-884, Sept. 2009.
  8. M. Ueda, M Iwaki, T. Nishihara, Y. Satoh, and K Hashimoto, “Investigation on Nonlinear Distortion of Acoustic Devices for Radio-Freqquency Applications and Its Suppression”, Proc. 2009 IEEE Ultrasonics Symposium, pp. 876-879, Sept. 2009.
  9. M. Ueda, M Iwaki, T. Nishihara, Y. Satoh, and K Hashimoto, “A Circuit Model for Nonlinear Simulation of Radio-Frequency Filters Employing Bulk Acoustic Wave Resonators”, IEEE Trans. On Ultrasonics, Ferroelectrics, and Frequency control, vol. 55, 2008, pp. 849-856.
  10. D. S. Shim and D. Feld, “A General Nonlinear Mason Model of Arbitrary Nonlinearities in a Piezoelectric Film”, Proc. 2010 IEEE Ultrasonics Symposium, pp. 295-300, Oct. 2010.
  11. D. Feld, “One-Parameter Nonlinear Mason Model for Predicting 2nd & 3rd Order Nonlinearities in BAW Devices”, Proc. 2009 IEEE Ultrasonics Symposium, pp. 1082-1087, Sept. 2009.

Estudio del comportamiento de un material piezoeléctrico (I)

Los dispositivos electrónicos, cada vez más, forman parte de nuestras herramientas de comunicación, y los componentes electrónicos son cada vez más conocidos, lo que permite aprovechar su potencial en el proceso de diseño. En esta entrada vamos a estudiar el comportamiento electromecánico de un material muy popular: el piezoeléctrico, explicaremos las ecuaciones constitutivas del fenómeno y realizaremos un modelo que permita el estudio del comportamiento en un simulador de circuitos.

LOS MATERIALES PIEZOELÉCTRICOS

Un piezoeléctrico consiste en un material no conductor que posee propiedades mecánicas activadas por la aplicación de campos eléctricos. Por reciprocidad, cuando a ese dispositivo piezoeléctrico le aplicamos torsiones y deformaciones mecánicas, también se generan fuerzas de tipo eléctrico.

El material piezoeléctrico más conocido por los diseñadores electrónicos es el cuarzo (SiO2), cristalizado en trigonal (cuarzo-α) hasta 570°C y en hexagonal (cuarzo-β) a temperaturas entre 570° y 870°C. A temperaturas superiores, el cuarzo se transforma en otro compuesto de sílice denominado tridimita.

La cristalización del cuarzo en su variedad hexagonal proporciona propiedades piezoeléctricas cuando se aplica al material campos eléctricos o tensiones mecánicas, y es muy utilizado en electrónica por este comportamiento, logrando obtener resonadores electromecánicos con muy alto factor de calidad.

Otros materiales piezoeléctricos muy utilizados en la industria electrónica son el nitruro de Aluminio (AlN), el óxido de Zinz (ZnO) y los materiales PZT, en diversas variantes.

En esta entrada vamos a estudiar el comportamiento piezoeléctrico a partir de las ecuaciones constitutivas que relacionan las propiedades mecánicas con las eléctricas, y a partir de ahí, obtener un modelo eléctrico que permita su uso en una herramienta de simulación de circuitos.

CONCEPTO DE ONDAS ACÚSTICAS

En Física denominamos onda acústica a un fenómeno mecánico de propagación de una onda de presión a lo largo de un material. Al poseer esta onda de presión una variación temporal periódica, puede propagarse a diversas frecuencias. Las ondas de presión que están situadas en la banda desde 100Hz a 10KHz se caracterizan porque son audibles, esto es, nuestro sentido del oído puede captarlas, enviar la información captada al cerebro y ser procesada para realizar una determinada acción. Sin embargo, todas las ondas de presión entran dentro del concepto de onda acústica, puesto que es un campo de fuerzas que se asemeja al campo eléctrico por su comportamiento.

En las ondas de presión acústicas distinguimos dos magnitudes importantes: la tensión T y la deformación S. La primera, T, es la fuerza por unidad de superficie que aparece en el entorno de un punto material de un medio continuo. Es, por tanto, una presión mecánica cuyas unidades son N/m2.

Descripción de la tensión mecánica

Asociada a ésta aparece la deformación S, que es desplazamiento que se produce en las partículas del material al aplicar una presión sobre éstas. La deformación se mide en m/m.

Desplazamiento producido por una deformación

Desplazamiento producido por una deformación

La relación entre ambas magnitudes se puede expresar asemejando la tensión T con el desplazamiento eléctrico D y la deformación S con el campo eléctrico E. Por tanto, si el campo eléctrico E es proporcional al desplazamiento eléctrico D a través de la constante dieléctrica del material ε, la deformación S es proporcional a la tensión T a través de un tensor constante [cE], como se puede ver en la expresión

\vec{T}=\left[ c^E \right] \vec{S}

Si al desplazamiento mecánico producido le denominamos u, podemos poner la deformación S como un gradiente de este desplazamiento mecánico a través de

\vec{S}=\vec{\nabla}u

Con lo que se puede ver la similitud con el campo eléctrico, que deriva en forma de gradiente de un potencial eléctrico V.

Normalmente T y S son magnitudes vectoriales, y [cE]  es un tensor. Pero si manipulamos el material de modo que sólo tengamos deformación en uno de los ejes (por convenio, a partir de aquí vamos a usar el eje Z), las expresiones se simplifican siendo T y S simples magnitudes escalares, y cE una constante de proporcionalidad. Las dimensiones de esta constante son las mismas que la tensión, tiene dimensiones de presión (N/m2).

La deformación está sujeta a la 2ª ley de Newton, que relaciona la velocidad de deformación con la tensión aplicada a través de

\rho \dfrac {{\partial}^2 u}{\partial t^2}=\vec{\nabla} \vec{T}

 donde ρ es la densidad de masa por unidad de volumen. Como hemos escogido trabajar sólo en una dirección de propagación, podemos poner la divergencia de T como

\vec{\nabla} \vec{T}=\dfrac {\partial T}{\partial z}=c^E \dfrac {\partial S}{\partial z}

y teniendo en cuenta que S es la derivada con respecto a z del desplazamiento mecánico u, introduciendo ésto en la expresión de la Ley de Newton y agrupando los términos obtenemos

\left( \rho \dfrac {{\partial}^2}{\partial t^2} - c^E \dfrac {{\partial}^2}{\partial z^2} \right)u=0

que es una ecuación de onda similar a la que se obtiene del desarrollo de las ecuaciones de Maxwell en electromagnetismo. De esta ecuación se puede derivar la ecuación de Helmholtz, asumiendo que la solución de esta ecuación es una solución del tipo

u=\left( Ae^{-jKz}+Be^{jKz} \right)e^{j \omega t}

y usando esta solución en la ecuación de onda anterior, obtenemos que

\left( \dfrac {{\partial}^2}{\partial z^2} + \dfrac {{\omega}^2 \rho}{c^E} \right)u=0

que corresponde a la ecuación de Helmholtz. En la ecuación de Helmholtz, la constante de propagación K se define por

K=\dfrac {\omega}{v}

donde v es la velocidad de propagación de la onda acústica (velocidad del sonido en el medio acústico). De aquí se puede obtener la constante cE, que está relacionada con el material a través de su densidad y de la velocidad de propagación de la onda acústica en el mismo.

c^E=\rho v^2

Al tratarse de una onda viajando a través de un medio material, podemos tratar la misma como una onda que se propaga a través de una línea de transmisión, cuya impedancia Z0 se obtiene por

Z_0=\rho v

que denominamos impedancia acústica del medio y que se expresa en Rayl o N⋅s/m3. La velocidad de propagación v, que es la velocidad del sonido en el medio material, está relacionada con el desplazamiento acústico lineal a través de

v=\dfrac {\partial u}{\partial t}

y el desplazamiento acústico angular se puede expresar por

\Delta \theta=K \Delta z

Viendo la similitud entre las ecuaciones de la acústica y las ecuaciones del campo electromagnéticos, podemos establecer una analogía en ambos tipos de interacciones que nos va a permitir desarrollar correctamente el estudio de los materiales piezoeléctricos.

ECUACIONES CONSTITUTIVAS DE UN MATERIAL PIEZOELÉCTRICO

En un medio piezoeléctrico, como en cualquier otro material, se producen tensiones y deformaciones acústicas. La peculiaridad del piezoeléctrico es que esas tensiones que aplicamos generan campos eléctricos. Del mismo modo, por reciprocidad, cuando aplicamos un campo eléctrico a un piezoeléctrico, generamos tensiones acústicas en el material. Por tanto, podemos relacionar estas tensiones y campos eléctricos mediante las ecuaciones constitutivas del piezoeléctrico, que son

T=c^ES-e_{33}E

D=e_{33}S+{\epsilon}^SE

Estas ecuaciones muestran la relación entre la tensión generada en la superficie del piezoeléctrico T con la deformación S, cuando se le aplica un campo eléctrico E. Recíprocamente, se produce un desplazamiento eléctrico en el piezoeléctrico cuando se aplica una deformación S, apareciendo un campo eléctrico E. En este caso, además de la constante que relaciona la deformación con la tensión cE, también aparece la constante dieléctrica del material εS y la constante piezoeléctrica e33, que liga la tensión T con el campo eléctrico E en la dirección Z. En un sistema tridimensional, esa constante estaría representada por un tensor.

Con estas ecuaciones constitutivas, podemos obtener la ecuación de onda anterior, teniendo en cuenta las mismas condiciones. Sabiendo que el desplazamiento eléctrico es, por el teorema de Gauss

\dfrac {\partial D}{\partial z}={\rho}_m

y que aunque se le aplique una deformación o un campo eléctrico no hay variación de la carga espacial, podemos reescribir la ecuación de onda anterior como

\left(\rho \dfrac {{\partial}^2}{\partial t^2} -c^D \dfrac {{\partial}^2}{\partial z^2} \right)u=0

donde la constante cD es la constante de deformación cuando aparece un campo electrostático en el medio material y se puede escribir por

c^D=c^E+\dfrac {e_{33}^2}{{\epsilon}^S}

que es característica de un medio piezoeléctrico. Así, la solución a la ecuación de onda será similar a la del caso de un medio material acústico, donde esa constante cD, se puede calcular a través de

c^D=\rho v^2

manteniéndose el resto de ecuaciones igual.

Como la solución de la ecuación de onda del piezoeléctrico es una onda que se propaga en una dirección determinada, podemos representar el medio de propagación como una línea de transmisión de impedancia A⋅Z0, donde Z0 es la impedancia acústica que depende exclusivamente del medio material a través de su densidad ρ y la velocidad de propagación del sonido v en el medio material; y A es la superficie del material piezoeléctrico.

linea

Línea de transmisión equivalente de la parte acústica

Al ser una línea de transmisión, tendrá resonancias cada n·λ/4, siendo λ la longitud de onda de la onda acústica. Si el dieléctrico tiene un espesor d, una resonancia λ/4 en la línea de transmisión. Por tanto, el material piezoeléctrico se puede usar para realizar resonadores eléctricos, ya que la resonancia acústica se puede relacionar, a través de las ecuaciones constitutivas, con la resonancia eléctrica.

CONCLUSIÓN

Hemos visto en esta entrada cómo se producen las ondas acústicas en un material, y la relación existente, a través de las ecuaciones constitutivas, entre los campos acústico y eléctrico.

Los materiales piezoeléctricos son de uso cada vez más común en electrónica, ya sea como resonadores, como generadores de sonido o como generadores de energía eléctrica para Energy Harvesting, realizando alimentadores eléctricos que usan la energía procedente de la vibración acústica para generar una tensión eléctrica.

El modelado circuital equivalente de estos componentes está resuelto a través de las ecuaciones constitutivas, siendo los modelos más habituales el modelo de Redwood o el de Mason.

En las próximas entradas trataremos de explicar el modelo equivalente de Mason de un piezoeléctrico, tanto en su versión lineal como no lineal.

REFERENCIAS

  1. W.P. Mason, Electromechanical Transducers and Wave Filters”Princeton NJ, Van Nostrand, 1948
  2. J. F. Rosenbaum, “Bulk Acoustic Wave Theory and Devices”, Artech House, Boston, 1988.
  3. M. Redwood, “Transient performance of a piezoelectric transducer”, J. Acoust. Soc. Amer., vol. 33, no. 4, pp. 527-536, April 1961.
  4. R. Krimholtz, D.A. Leedom, G.L. Mathaei, “New Equivalent Circuit for Elementary Piezoelectric Transducers”, Electron. Lett. 6, pp. 398-399, June 1970.

A 900Mhz Feedfordward Amplifier with MOSFET

In this article, we are going to demonstrate a 900Mhz feedforward amplifier design. Feedforward is a linearization technique for the IM distortion, caused by the nonlinear feature of the active device. Lateral interference, generated by the IM distortion on both sides of the main frequency, affecting the Adjacent Channel. Decreasing this interference is the purpose of this entry.

We are going start with a LDMOS amplifier, tuned to 900Mhz. The active device is a STMicroelectronics’ MOSFET, PD84001, It
operates at 8 V in common source mode at frequencies of up to 1 GHz. POUT is 31dBm (IDQ=50mA) and Drain Efficiency, 60%. Once we have designed the amplifier, we’ll make the linearization of the IM products, using the feedforward technique.

THE MOSFET AMPLIFIER

The amplifier is designed in common source mode. The Operating Point is chosen as the optimal features of the manufacturer: VDS=8V, IDQ=50mA . At this OP, and at 900MHz, ZIN=3,6+j·4,3Ω and ZOUT= 3,9 + j·5,5Ω. Maximum power transfer is obtained with a conjugate matching network at the generator and load impedances, which are Z0=50. Once the matching networks are calculated, the purposed schema for the amplifier is

PD84001 Two-Stage Amplifier

PD84001 Two-Stage Amplifier

Amplifier’s gain is 34,3dB, and its phase is 76,4deg. Input and Output Return Losses are respectively 30,7 and 39,8dB. Then, the amplifier is matched and the maximum power at 900MHz is 27dBm, for 1-Tone.

2 Tone Output Power and TOD vs. Input Power, at 900Mhz

2 Tone Output Power and TOD vs. Input Power, at 900Mhz

For a 2-Tone input, the IM distortion generates a power drop, caused by the Third Order Distortion. TOI (Third Order Intercept) is 31,7dBm, near of the maximum output power of the datasheet, and it causes the power drop.

Intermodulation products are 12dB below the carrier, and this value may cause interference on the Adjacent Channel. Therefore, we must reduce this value as much as possible, using a linearization technique.

There are many linearization techniques, but we are going to use the feedforward technique, because it is a technique that requires only the use of RF networks.

The amplifier gain, including the second and third order distortions, could be expressed by

P_o= \hat{g} (P_i)=\hat{g}_1 P_i+\hat {g}_2 P_i^2+\hat {g}_3 P_i^3

with

\hat{g}_1=g_1e^{j \theta_1}

\hat{g}_2=g_2e^{j \theta_2}

\hat{g}_3=g_3e^{j \theta_3}

Where the input signal Pi is a 2-Tone signal. In this case, we will not take into consideration the second order distortion, since the Pfrequencies will be very close together. A bandpass filter could remove the second order spurious.

The amplifier gain is complex, The coefficients g1 and g3 could be expressed using the polar notation (in mag/phase). Then, these are

\hat{g}_1=2961,54 \cdot e^{j 76,4}

\hat{g}_3=11,43 \cdot e^{-j 95,3}

These coefficients are going to use to calculate the phase shifter of the first stage. Now, we shall describe shortly the feedforward technique.

FEEDFORWARD PRINCIPLE

The Feedfordward Principle is based on reducing the distortion by mixing in phase opposition with the same distortion. In a RF amplifier, an output distorted signal is generated due to the active device’s nonlinearity. It could be mixed with the input signal in phase opposition, adjusting the levels of both signals.  So, we get the distorted signal on one port, and on the other port, only the distortion spurious.

Cancellation of the main signals on the second port is achieved by placing a delay line (τ1), in the secondary network of the first stage. One sample of the signal output of the amplifier (G1) is derived to combine with the secondary network, with a combiner. The levels of both signals are equalized by an inter-stage attenuator (β). Then, both signals are combined. Then, the ouput signal of the amplifier is called MAIN, and the combined signal, AUX.

Feedforward Principle

AUX is now used as an error signal in the second stage, which is amplified by an error amplifier (G2), while the MAIN is delayed with another delay line (τ2). In this second stage, we want to get the same effect than the first stage: put both signals in phase opposition, and combine them. Then, the distortion is cancelled and reduced the interference on the Adjacent Channel.

The level at the output of the amplifier could be written as

P_{MAIN}= \hat{g} \left( \dfrac {P_i}{2} \right)=g_1e^{j \theta_1} \dfrac {P_i}{2}+g_2e^{j \theta_2} \dfrac {P_i^2}{4}+g_3e^{j \theta_3} \dfrac {P_i^3}{8}

and PAUX1 (the sample level before the error combiner) could be expressed by

P_{AUX_1}=\beta g_1e^{j \theta_{A1}} \dfrac {P_i}{2}+\beta g_2e^{j \theta_{A2}} \dfrac {P_i^2}{4}+\beta g_3e^{j \theta_{A3}} \dfrac {P_i^3}{8}

and \theta_{Ai}=\theta_i + \theta_{\beta}

The level PAUX2 at the secondary network is

P_{AUX_1}=\dfrac {P_i}{2} e^{j{\theta}_{A2}}

In these expressions, β is the magnitude of the losses of the inter-stage attenuator and θβ is its phase; and θA2 is the phase of the delay line τ1. It must be satisfied

\theta_1+\theta_{\beta}=\theta_{A2} \pm 180

\dfrac {d \theta_1}{d \omega}+\dfrac {d \theta_{\beta}}{d \omega}=\dfrac {d \theta_{A2}}{d \omega}

θ1 is the phase of the linear gain of the amplifier. Then, not only the phases must be in phase opposition, but also the delay time must be the same in every subnetworks. In magnitude, it must be satisfied |β·g1|=1.

In the second stage, the gain of the amplifier must equalize the g2 and g3 levels, and their phases must satisfy the same equations (absolute phase and delay time) of the first stage, to combine and cancel the distortions.

\left| \beta G_2 \right|=1

\theta_{\beta}+\theta_{G_2}=\theta_{\tau 2} \pm 180

\dfrac {d \theta_{\beta}}{d \omega}+\dfrac {d \theta_{G_2}}{d \omega}=\dfrac {d \theta_{\tau 2}}{d \omega}

In RF designs, the adders must be replace by hybrid couplers or directional couplers, which have insertion and coupler losses. Using two hybrid couplers (3dB for insertion losses) to split Pi and combine PAUX1 and PAUX2, and two directional couplers (with C for coupler losses) to take the sample in the first stage and combine the error sample in the second stage, the expressions are now

\left| \dfrac {\beta}{IL_{hyb} C_{coup}}g_1 \right|=1

\theta_1+\theta_{\beta}+\theta_{coup}=\theta_{A2} \pm 180

\dfrac {d \theta_1}{d \omega}+\dfrac {d \theta_{\beta}}{d \omega}+\dfrac {d \theta_{coup}}{d \omega}=\dfrac {d \theta_{A2}}{d \omega}

at the first stage and

\left| \dfrac {\beta}{IL_{hyb}^2 C_{coup}^2}G_2 \right|=1

\theta_{\beta}+2 \theta_{coup}+\theta_{G2}=\theta_{\tau 2} \pm 180

\dfrac {d \theta_{\beta}}{d \omega}+2\dfrac {d \theta_{coup}}{d \omega}+\dfrac {d \theta_{G2}}{d \omega}=\dfrac {d \theta_{\tau 2}}{d \omega}

at the second stage.

In a narrowband amplifier, delay time could not be considered, because its phase slope will be smallest than the phase slope of a broadband amplifier.

900MHz FEEDFORDWARD AMPLIFIER

Now, we are going to design our feedforward amplifier, based in our two-stage LDMOS amplifier. In first, we must split the input signal in two outputs, one to the amplifier and the other to the phase shifter. We are going to use an 180-deg hybrid coupler, with 3dB of insertion losses. At this frequencies, hybrid couplers could be easily found in the market, as a Surface Mounting Device (SMD). The designed amplifier is a narrowband amplifier.

The output levels of the hybrid coupler are the same, in magnitude and phase. The phase of the amplifier gain was 76,4deg in linear mode, but in nonlinear mode, we have got a phase of 69,4deg, with 0dBm of input power. Taking a sample of the output level of the amplifier with a directional coupler, which introduces a 90deg coupling phase, with 10dB of coupling level, we have got a sample level of 12dBm, with a phase of 159,4deg.

Then, we are going to combine with another hybrid coupler, and as in the secondary network the level is -6dBm, we have to equalize both levels with the attenuator, whose attenuation must be ≈20dB. The phase shifter should be adjusted to a phase of ≈-12 deg.

First stage for AUX adjustment

First stage for AUX adjustment

Adjusting the phase and the level with the phase shifter and the attenuator, we are able to optimize the response for several input levels.

AUX Main an Intermodulation Frequencies, vs Input Power

AUX Main an Intermodulation Frequencies, vs Input Power

We are going to complete now the second stage amplifier, where an error amplifier increases the level of AUX spurious intermodulation to combine in phase opposition with the MAIN line. The error amplifier G2 should not be a power amplifier, at this stage. A linear, general-purpose amplifier maybe used. The gain is calculated by the difference between the MAIN and AUX IM spurious. This value is 45,5dB, because we are combining with a directional coupler, to reduce the insertion losses in the MAIN line. Using an amplifier with a magnitude of 45,5dB and a phase of -145deg, we have got a phase shifter with the same value, and after the coupler, the IM distortion decreases around 65dB. The output level is now 31dBm, and the TOI increases to 75dBm.

Output level and TOD, after the feedforward correction

Output level and TOD, after the feedforward correction

The definitive amplifier is

Definitive Feedforward Amplifier

Definitive Feedforward Amplifier

CONCLUSIONS

With the amplifier designed we have achieved a significant improvement: increasing efficiency around 40dB for the same output level, on adjacent channel. Furthermore, the amplifier is very simple to realize with a few RF devices. The design is very easy and intuitive.

However, the Feedforward has two serious disadvantages: on the PCB, it needs a lot of surface; and the input level cannot be increased above the input level that provides maximum output level of the MOSFET, because the distortion can be increased above the value we have corrected.

In broadband we must take into consideration not only the phase of the amplifiers but also the group delay, because the phase slope of the amplifiers has to be compensated by the phase shifter. Then, the phase shifter could have a larger surface dimensions, because it must be a delay line, too.

References

  1. R. Cordell, “A MOSFET Power Amplifier with Error Correction”; JAES, vol. 32, nr. 1/2, 1984 Jan/Feb
  2. J. Vanderkooy, S.P. Lipshitz, “Feed-Forward Error Correction in Power Amplifiers”, JAES, Vol. 28, Nr. 1/2, 1980 Feb
  3. A.M. Sandman, “Reducing Distortion by ‘Error add-on‘”, Wireless World, vol.79, p.32, 1974 Oct