SHARENG Divulgación

Inicio » Uncategorized

Category Archives: Uncategorized

Ajustando filtros mediante el método de Dishal

filtroEn Telecomunicaciones es usual tener que usar filtros para poder eliminar frecuencias indeseadas. Estos filtros suelen ser de bandas muy estrechas y se suelen utilizar técnicas de líneas acopladas, por lo que en la mayor parte de los diseños se debe recurrir a la simulación electromagnética para verificar el diseño. La simulación electromagnética, aunque es una potente herramienta, suele ser lenta si se desea optimizar mediante algoritmos convencionales. Aunque estos algoritmos están incluidos en la mayor parte de los simuladores electromagnéticos, ya sea en 2D o en 3D, si la respuesta del filtro está muy alejada de la deseada, la optimización suele ser muy lenta, por lo que se requieren otros métodos que permitan ajustar previamente antes de realizar una optimización final. Uno de los métodos es el de Dishal, en el que se puede sintonizar un filtro de varias secciones a base de sintonizar cada una de ellas. En esta entrada, sintonizaremos un filtro microstrip de tipo HAIRPIN, de resonadores λ/2 acoplados, usando un simulador electromagnético como HPMomentum.

Los filtros son los dispositivos más comunes que se usan en Telecomunicaciones. Eliminan las frecuencias interferentes y el ruido, pudiendo procesar la señal recibida o transmitida de una forma más eficiente. Tienen bastante literatura para su diseño, y existen muchas combinaciones para obtener su respuesta. Sin embargo, es uno de los dispositivos en los que es más difícil obtener un óptimo resultado. Su sintonía física requiere habilidad y entrenamiento, y su sintonía en simulación paciencia y tiempo. Sin embargo, existen técnicas que permiten la optimización de un filtro a base de usar metodologías de ajuste que permita acercarse a los parámetros ideales del filtros. Una de metodología que permite sintonizar un filtro de forma sencilla es el método de Dishal y es el que vamos a usar para sintonizar un filtro paso banda HAIRPIN para la banda de subida de LTE-UHF.

Esta metodología permite realizar el ajuste de un filtro paso banda acoplado sintonizando tanto de los factores de calidad Qi y Qo que necesita el filtro para ser cargado, como de los factores de acoplamiento Mi,i+1 que acoplarán las diferentes etapas, de forma independiente. Estos parámetros son calculados a través de los parámetros del filtro prototipo, que se pueden obtener ya sea a través de las tablas presentes en cualquier libro de diseño de filtros como en programas de cálculo como MatLab. Las expresiones para calcular los parámetros fundamentales de un filtro paso banda acoplado son

formulas

donde fh y fl son las frecuencias de corte de la banda pasante, f0 es la frecuencia central y FBW el ancho de banda fraccional. Los valores g0..gn son los coeficientes del filtro prototipo normalizado. Con estos valores obtendremos los parámetros de acoplamiento de nuestro filtro.

FILTRO PASO BANDA HAIRPIN DE 5 SECCIONES

Vamos a desarrollar un filtro paso banda en tecnología microstrip, usando una configuración HAIRPIN de resonadores λ/2 acoplados. En este filtro, la línea resonante es una línea λ/2, que se acopla al siguiente resonador mediante la sección λ/4. O más concretamente, entre un 85 y un 95% de λ/4. Su denominación HAIRPIN es debida a que tiene forma física de peine. Nuestro filtro va a tener las siguientes características fundamentales:

  • Banda pasante : 791÷821MHz (banda de UHF para LTE de subida)
  • Número de secciones: 5
  • Tipo de filtro: Chebychev 1
  • Factor de rizado: 0,1dB
  • Impedancias de generador y carga: 50Ω

Con estos valores acudimos a las tablas para obtener los coeficientes g0..g6 del filtro prototipo y aplicando las expresiones anteriores obtenemos que

  • Qi=Qo=30,81
  • M12=M45=0,0297
  • M23=M34=0,0226

Con estos coeficientes se pueden calcular las impedancias Zoe y Zoo que definirán las líneas acopladas, así como la posición de los feeds de entrada y salida. En este último caso, esta posición se puede obtener a partir de

feed

Como soporte vamos a usar un substrato Rogers, el RO3006, que tiene una εr=6,15, usando un espesor de 0,76mm y 1oz de cobre (35μm). Con este substrato, el filtro obtenido es:

filter

y con estos valores, pasaremos a la simulación.

SIMULACIÓN DEL FILTRO PASO BANDA

Usando HPMomentum, el simulador electromagnético de ADS, vamos a poder simular la respuesta de este filtro, que se puede ver en la siguiente gráfica

Resultado de la simulación del filtro

Resultado de la simulación del filtro

que, la verdad sea dicha, no se nos parece ni por asomo a lo que pretendíamos realizar. El filtro está cerca de la frecuencia f0, tiene un ancho de banda de 30MHz, pero ni está centrado ni el rizado es, ni de lejos, 0,1dB. Por tanto, habrá que recurrir a una sintonía usando el método de Dishal y así llevar el filtro a la frecuencia deseada, con el acoplamiento deseado.

Buscando la posición del alimentador

Buscando la posición del alimentador

AJUSTANDO EL Q EXTERNO

En primer lugar vamos a ajustar los factores de calidad de los resonadores de generador y de carga, que tienen que ser de 30,81. Como ambos son iguales, la sintonía obtenida servirá para los dos. Para ajustar los Qi y Qo, tendremos que buscar la posición adecuada de la alimentación para que el valor sea el deseado.

Para calcular el Qext, se evalúa el coeficiente de reflexión del resonador y se obtiene su retardo de grupo. El factor de calidad será

qext Cuando hacemos la primera simulación y representamos Qext, obtenemos

qext2

donde se puede comprobar que ni el filtro está centrado ni su factor de calidad es el deseado. Para centrar el filtro, aumentamos la distancia entre las líneas en 1,1mm y recortamos las líneas resonantes en 0,34mm. De este modo, obtenemos

qext2_2

en el que ya están centradas las líneas, siendo el Qext de 37,28. Ahora aumentamos la distancia del feed al extremo de la pista en 0,54mm y obtenemos el Qext deseado.

qext2_3

Ya tenemos centrado el filtro y con el Qext requerido. Ahora tocaría ajustar los acoplamientos.

AJUSTE DE LOS ACOPLAMIENTOS

Para ajustar los acoplamientos, primero separamos el feed unos 0,2mm de la línea, y hacemos un espejo de la misma para que quede como sigue

coup_1

En este caso, para medir el acoplamiento usamos los picos que salen en la transmisión (S21), y aplicamos la expresión

coup_2

El resultado de la simulación, para el primer acoplo, es

coup_3

que como podemos comprobar está en el valor requerido.

En el caso del segundo acoplo

coup_4

que también está cerca de su valor requerido. Por tanto, con los cambios obtenidos, simulamos el filtro total y obtenemos

Filtro después de la primera sintonía

Filtro después de la primera sintonía

que ya se acerca al filtro deseado.

REITERANDO LA SINTONÍA

Si reiteramos sobre la sintonía, podremos llegar a mejorar el filtro hasta los valores que deseemos. Así, disminuyendo el Qext obtenemos

Disminución del Qext

Disminución del Qext

que supone ya una mejora importante. Jugando ahora con los acoplamientos, disminuyéndolos, llegamos a obtener

filt_3

Ajuste de los acoplamientos

que podemos dar por válido. Por tanto, el método de Dishal nos ha permitido, a partir de los parámetros calculados, ajustar el filtro hasta obtener las características deseadas.

CONCLUSIONES

Hemos analizado el método de Dishal como herramienta para el ajuste y sintonización de un filtro paso banda de 5 secciones, con óptimos resultados. La sencillez del método permite ajustar los principales parámetros de forma independiente, de manera que el ajuste final u optimización sean más sencillas, cosa de agradecer en simuladores electromagnéticos, que requieren de potencia de cálculo y tiempo de simulación. Vemos que el método, realizado paso a paso, nos permite ir ajustando las características hasta obtener el resultado deseado, por lo que podemos concluir que es un método muy útil en sintonización de filtros, tanto en discretos como en distribuidos, y que bien usado permite acercarse lo suficientemente al resultado final como para que la optimización electromagnética sea innecesaria.

REFERENCIAS

  1. Zverev, Anatol I., “Handbook of Filter Synthesys”, Hoboken, New Jersey : John Wiley & Sons Inc., 1967. ISBN 978-0-471-74942-4.

¡Feliz cumpleaños, Teoría Electromagnética!

maxwell-finHace 150 años, en 1865, el escocés James C. Maxwell publicó “A Dynamical Theory of the Electrodynamic Field”, una Teoría que marcó un hito en el naciente mundo de la Física Moderna, ya que estableció las bases para la unificación de dos campos que, hasta ese momento, se trataban de forma independiente: el Campo Eléctrico y el Campo Magnético. Con esta unificación, Maxwell puso las bases para comprender el comportamiento de los fenómenos electromagnéticos y su propagación, siendo la base hoy día del funcionamiento de nuestras comunicaciones. Desde esta entrada, queremos dar a conocer estas ecuaciones, su significado y su importancia, y rendir homenaje a uno de los científicos más importantes de los últimos tiempos.

No es una casualidad que este año los Físicos celebremos el Año Internacional de la Luz, puesto que fue hace 150 años cuando un físico escocés publicó las bases para la Teoría Electromagnética, marcando un antes y un después en el conocimiento de los fenómenos eléctricos y magnéticos y logrando la primera unificación en una sola Teoría de dos campos que, hasta ese momento, eran tratados de formas diferentes: el Campo Eléctrico y el Campo Magnético.

Hasta este momento, se conocían ciertas interrelaciones entre ambos fenómenos. Conocíamos, a través de la Electrostática, la Ley de Coulomb y el Teorema de Gauss, que el campo eléctrico era generado por cargas que interaccionaban entre ellas, y a través de la Ley de Biot-Savart y la Ley de Ampère, que los campos magnéticos eran generados por corrientes (cargas en movimiento) y que generaban interacciones entre ellos, a través de la fuerza de Lorenz. Sin embargo, todas las leyes y axiomas de los campos de los campos Eléctrico y Magnético se trataban como algo independiente, no había una unificación que mostrase de forma contundente las interrelaciones hasta que Maxwell las unificó.

Al principio se trataba de una veintena de ecuaciones integro-diferenciales, aunque en realidad se podían reducir a las ecuaciones actuales, debido a que Maxwell las escribió para cada eje de coordenadas. Usando el operador diferencial diferencial ∇ y las interrelaciones matemáticas entre las integrales y dicho operador, al final las ecuaciones quedaron descritas tal y como se conocen hoy, tanto en su forma integro-diferencial como en su más popular descripción diferencial vectorial.

Ecuaciones de Maxwell y sus leyes

Ecuaciones de Maxwell y sus leyes

Este conjunto de cuatro ecuaciones establecen la unificación de los campos Eléctrico y Magnético en una nueva Teoría que se llama la Teoría Electromagnética, la primera gran unificación de campos realizada en la Física y una de las más bellas descripciones que existen en la disciplina.

No vamos a ir desgranando una a una las ecuaciones, ya que en varias ocasiones lo hemos hecho en otras entradas, pero uno de los detalles más evidentes que se sacan de las ecuaciones, y que las hace interesantes, es su asimetría. Esta asimetría, debida precisamente a la diferencia entre el comportamiento de ambos campos, se hace patente dos a dos: en la Ley de Gauss de ambos campos, y entre la Ley de Faraday y la de Ampère.

Asimetría de la Ley de Gauss

La Ley de Gauss o Teorema de la Divergencia está relacionada con las fuentes y sumideros de las líneas de fuerza del campo, y muestra hacia dónde divergen estas líneas de interacción. En el caso del campo eléctrico, las líneas divergen hacia las cargas, que son las fuentes o sumideros de las líneas de campo. Gráficamente se puede expresar como

350px-LineasCampo

Divergencia de las líneas de capo eléctrico a las cargas

Por tanto, las líneas del campo eléctrico nacen y mueren en las cargas.

En el caso del campo magnético podemos observar que la divergencia es nula, esto es, no hay fuentes o sumideros a los cuales las líneas de campo magnético diverjan. Por tanto, no existen los monopolos magnéticos. El campo magnético rota sobre el origen del mismo, que lo establece la Ley de Ampère y que son las corrientes ocasionadas por cargas en movimiento. Y su expresión más gráfica es

Campo magnético rotando alrededor de una línea de corriente

Campo magnético rotando alrededor de una línea de corriente

Esta asimetría muestra que ambos campos son diferentes en su origen, lo que se muestra muy claramente cuando los campos son estáticos. No obstante, la no dependencia temporal de estas ecuaciones las hace válidas no sólo para los campos estáticos, sino también para los campos dinámicos. Es la otra asimetría, la de las leyes de Faraday y Ampère, la que introduce, además, el dominio temporal.

Asimetría de las Ley de Faraday y Ampère

Las leyes del campo están relacionadas con los campos dinámicos, aquellos que varían de forma temporal. La primera dice que la variación de un flujo magnético con el tiempo genera una fuerza electromotriz, o llanamente, que la variación de un campo magnético genera un campo eléctrico. Es el principio de las dinamos y los generadores eléctricos, en los que, al variar el flujo de un campo magnético mediante medios mecánicos, son capaces de generar un campo eléctrico.

En la Ley de Faraday también está presente la Ley de Lenz, que indica que ese campo eléctrico tiende a oponerse a la variación del campo magnético, y por eso el signo negativo en la expresión.

La segunda, la Ley de Ampère, parte de la ley de la magnetostática, que dice que la circulación de un campo magnético a través de una línea cerrada es proporcional a la corriente que encierra ese contorno. Esta Ley de la Magnetostática fue generalizada por Maxwell al introducir los campos eléctricos variables con el tiempo, mostrando un resultado que, en su forma diferencial, guarda similitud con la Ley de Faraday, salvo que introduce la densidad de corriente para que se mantenga coherente con la Ley de Ampère de la Magnetostática. La conclusión, por tanto, es que los campos eléctricos variables con el tiempo generan campos magnéticos y los campos magnéticos variables con el tiempo, eléctricos.

A pesar de la asimetría de las expresiones, que es la que genera, bajo mi punto de vista, la belleza de la descripción del escocés, de ellas se deduce una de las conclusiones más importantes de la Teoría Electromagnética, y es que los campos electromagnéticos son ondas que se propagan en cualquier medio material dieléctrico, no necesitando de soportes físicos, a diferencia de otros tipos de ondas como las acústicas, que presentan características similares en la formulación de los campos asociados. Esta conclusión es la que nos permite asociar fenómenos como la propagación luz, que presenta una dualidad partícula-onda ya que es un campo electromagnético formado por partículas llamadas fotones. Y al poder propagarse en el vacío, puede transmitir de un lugar a otro la información, que en el caso de la luz, es la visión de un fenómeno que haya ocurrido en el Universo a través de su observación.

Los campos electromagnéticos como ondas que se propagan en el espacio

De resolver las ecuaciones, se puede llegar a las ecuaciones de onda de Helmholz, tanto para el campos eléctrico como para el magnético.

Ecuaciones de onda para el campo eléctrico y magnético

Ecuaciones de onda para el campo eléctrico y magnético

En estas ecuaciones la asimetría que presentan las ecuaciones de Maxwell desaparece, y se pueden resolver como una onda propagándose por un medio material, incluido el vacío, en el que la velocidad de propagación es la velocidad de la luz, c, siendo ésta la máxima velocidad a la que se puede propagar la onda.

Resolviendo esta ecuación de onda, obtendremos la forma en la que se propaga un campo electromagnético en el medio, como una onda compuesta por un campo eléctrico y un campo magnético variables con el tiempo.

El campo electromagnético como onda de propagación

El campo electromagnético como onda de propagación

donde en azul tenemos el campo eléctrico, en rojo el campo magnético y en negro la dirección de propagación de la onda.

Influencia de la Teoría Electromagnética en nuestras vidas

Es evidente que la Teoría Electromagnética de Maxwell ha tenido una influencia notable en nuestras vidas, afectando en muchos aspectos, pero donde más influencia ha tenido es en la comunicación. Los seres humanos necesitamos comunicarnos, y la Teoría Electromagnética de Maxwell nos abre las puertas a un campo en el que las comunicaciones casi no tienen límites. Las comunicaciones modernas no se podrían entender sin esta notable contribución del escocés, y este año no celebraríamos el Año Internacional de la Luz si no hubiese existido todavía esta unificación de campos. Hoy día la Teoría Electromagnética forma parte habitual de nuestras vidas y costumbres, a través de las comunicaciones a larga distancia, ya sean inalámbricas, por cable o por fibra óptica. Recibimos imagen y sonido gracias a ella, así como podemos comunicarnos a larga distancia gracias a la transmisión por radio y enviar datos a cualquier parte del mundo. Es una de las cuatro interacciones de la naturaleza, junto a la gravedad y a las interacciones fuerte y débil del mundo atómico, y por tanto, por ese motivo podemos decir con orgullo ¡Feliz cumpleaños, Ecuaciones de Maxwell!

Referencias

  1. John R. Reitz, Frederick J. Milford, Robert W. Christy, “Foundations of Electromagnetic Theory”, Addison-Wesley Publishing Company, Inc., Massachusetts (USA), 1979

Influencia de los campos electromagnéticos en la dinámica de los fluidos

la_caza_del_submarino_rusoAunque parezca lo contrario, en esta entrada no vamos a hablar de novelas de espías, pero sí vamos a usar un argumento de la trama de una conocida novela de espionaje para presentar la teoría magnetohidrodinámica. Ésta es una disciplina de la física, que forma parte de la teoría de campos y analiza el movimiento de fluidos con carga eléctrica en presencia de un campo electromagnético y sus posibles aplicaciones. Comprendiendo los principios de la dinámica de fluidos, llegaremos a las ecuaciones que constituyen la base de la teoría, sus conclusiones y su actual utilización.

Los que conozcan la trama de la novela de Tom Clancy “The hunt of Red October”, sabrán que trata sobre la deserción de un submarino soviético de la clase Typhoon, dotado de un sistema de propulsión silencioso y difícilmente detectable por el sonar. En la novela, se le describe como “propulsión magnetohidrodinámica” y consiste en generar flujo de corriente hidráulica a lo largo de la nave usando campos magnéticos. Este flujo permite su desplazamiento sin usar los motores convencionales, aprovechando las características conductivas del agua salada. Este sistema de propulsión silenciosa convertía a la nave en algo letal y peligroso de verdad, puesto que podría acercarse a la costa de los EE.UU. sin ser detectado y lanzar un ataque con cabezas nucleares sin que nadie lo pudiese evitar. Esta es la trama, pero, ¿cuánto hay de cierto en la misma? ¿Existe un método de propulsión o un sistema que provoque el movimiento de un fluido por la presencia de un campo electromagnético? ¿Y a la inversa? ¿Podemos generar un campo electromagnético sólo usando el movimiento de un fluido cargado?

Aunque pueda parecer que, al tratarse de una novela de espías y acostumbrados como estamos a la tendencia de la ficción a crear ciertas bases argumentales, a veces ilusorias, para dotar de cierto dramatismo a la trama, lo cierto es que la teoría magnetohidrodinámica es muy real. Tanto, que el primer efecto destacable de la misma lo podemos comprobar simplemente con la presencia del campo magnético terrestre. Este es fruto del movimiento del núcleo interno de la tierra, compuesto de una capa de hierro líquido (fluido) que envuelve a una gran masa de hierro sólido. Este núcleo , que se mueve acompasado por la rotación de la Tierra, tiene cargas en movimiento que generan una corriente eléctrica, y esa corriente eléctrica genera el campo magnético que protege a la Tierra de los embates de partículas de alta energía que proceden de nuestra estrella, el Sol.

El propio Sol, que es una nube de gas en estado de plasma, tiene poderosos campos magnéticos que determinan el movimiento de las partículas que constituyen el plasma en su interior. Por tanto, la teoría magnetohidrodinámica que usa Clancy en esa trama es muy real. Vamos entonces a desvelar sus bases.

DINÁMICA DE FLUIDOS: LAS ECUACIONES DE NAVIER–STOKES

Un fluido es un medio material continuo formado por moléculas donde sólo hay fuerzas de atracción débil, que se encuentra en uno de estos tres estados de la materia: líquido, gaseoso o plasma. La dinámica de fluidos es la parte de la física que se ocupa del estudio del movimiento de estos medios en cualquiera de estos estados, siendo la masa del fluido la parte que se desplaza de un punto a otro.

Del mismo modo que en campos electromagnéticos definíamos la corriente eléctrica como la variación de la carga con el tiempo, en los fluidos hablaremos de un flujo de corriente ψ que es la variación de la masa M del fluido respecto del tiempo.

Si tomamos una superficie donde hay ni partículas de masa mi que se mueven a una velocidad vi, podemos definir una densidad de flujo de corriente ℑ, que se expresa como

Flujo de corriente debida a partículas de masa m

Flujo de corriente debida a partículas de masa m

Vamos a considerar, como se muestra en la figura, que nuestro fluido es un medio material que tiene todas las partículas de la misma masa, por lo que el producto ni⋅mi se puede extraer del sumatorio, quedando entonces una velocidad v  que es la suma vectorial de todas las velocidades de las partículas del fluido.

La relación entre el flujo de corriente y la densidad de flujo de corriente es una integral a lo largo de una superficie S. Si integramos el flujo de corriente total en una superficie cerrada, por la conservación de la masa, tendremos que es igual  es la variación de la masa con respecto al tiempo, y siendo la densidad la masa por unidad de volumen, podemos escribir que

continuity1

Como este flujo de corriente se opone a la variación de la masa respecto del tiempo, y la masa es la integral de volumen de la densidad del fluido ρMy aplicando el teorema de la divergencia, podemos escribir esta expresión en su forma diferencial

continuity2

que es la ecuación de continuidad de un fluido y que representa la conservación de la masa neta dentro del fluido. Esta es una de las ecuaciones de Navier-Stokes, primordial para comprender el movimiento de las partículas del fluido.

Para la otra ecuación, debemos de recurrir a la derivada sustancial. Esta es una descripción que incluye no sólo la variación con respecto al tiempo de la magnitud física del fluido, sino que además incluye la variación de la misma respecto de la posición. La expresión de la derivada sustancial es

sustancial

donde v es la velocidad del fluido y  el operador diferencial que ya vimos en la entrada sobre radioenlaces. Como el momento lineal del fluido se conserva, cuando interviene la fuerza de la gravedad , actúa además una presión P en sentido contrario al movimiento en el fluido y contraponiéndose a las deformaciones una viscosidad μobtenemos que

Esta es la ecuación del movimiento de un fluido, y es no lineal debido a la derivada sustancial. Por tanto, en un fluido intervienen no sólo las fuerzas aplicadas en el fluido, sino también la presión de éste y su viscosidad. Si el fluido no presentase viscosidad, y aplicando la derivada sustancial  a la ecuación anterior, podemos obtener un caso particular

noviscoso

que nos define la ecuación del movimiento de un fluido no viscoso.

DINÁMICA DE FLUIDOS: MAGNETOHIDRODINÁMICA

Si el fluido presenta partículas cargadas y aplicamos un campo electromagnético, con componentes E y B, la fuerza que interviene en este caso no es la gravedad, sino la fuerza de Lorenz que aplica el campo magnético

florenz

donde J es la densidad de corriente eléctrica en el fluido y B el campo magnético aplicado. En la expresión desarrollada, obtenida a partir del desarrollo de la Ley de Ampere y una de las identidades del operador diferencial , obtenemos dos términos. El primero es una fuerza de tensión magnética mientras que el segundo término se asemeja a una presión magnética producida por la densidad de energía magnética del campo. Sustituyendo F en la expresión obtenida en el apartado anterior y considerando un fluido no viscoso, tendremos que

movimiento2

Teniendo en cuenta que, según las ecuaciones de Maxwell, la divergencia del campo magnético es nula, si consideramos un campo magnético unidireccional, las variaciones espaciales de la divergencia son perpendiculares al campo, por lo que la fuerza de tensión magnética se anula y la expresión anterior queda

movimiento3

Si el fluido está en estado de plasma, tenemos que la Ley de Ohm se puede escribir como

ohm

debido a que en este estado la conductividad tiende a ser infinita y para mantener el flujo de corriente, la fuerza aplicada debe ser lo más baja posile. De este modo, la Ley de Faraday queda como

faraday

CONCLUSIONES DE LAS ECUACIONES

Como hemos podido comprobar, la magnetohidrodinámica es, en realidad, una consecuencia de aplicar campos electromagnéticos a fluidos que poseen carga eléctrica, y en esto se basaba Clancy para “propulsar” su Octubre Rojo. No obstante, los intentos de generar un propulsor naval de estas características se han quedado en prototipos construidos en los años 60 puesto que las inducciones magnéticas que requerían eran elevadas (del orden de más de 5 Tesla) en compartimientos muy voluminosos (centenares de m3). Por tanto, el submarino de la clase Typhoon cumplía con las exigencias de proporcionar el debido dramatismo a la novela, sin despreciar por ello la base científica en la que se basaba, debido al tamaño de este tipo de naves, considerados por los EE.UU. como colosos de las profundidades debido al desplazamiento de toneladas que eran capaces de propulsar.

No quiere decir que la aplicación de la magnetohidrodinámica esté actualmente aparcada. Debido a ella, los astrofísicos han logrado generar modelos basados en estas ecuaciones para determinar las trayectorias de las partículas en el Sol y predecir erupciones solares. Y los geofísicos, comprender mejor la estructura de los núcleos de los planetas.

Además, estas técnicas son utilizadas desde hace años también en metalurgia: a medida que calentamos un metal transformándolo en un fluido, incrementamos notablemente su conductividad, de modo que se puede aplicar la Ley de Ohm para los plasmas. Esto evita, en los procesos de fundición y generación de aleaciones, que el metal entre en contacto con el crisol y adquiera escoria, mejorando notablemente la calidad de la aleación. Es el principio de los altos hornos eléctricos, que vinieron a sustituir a los antiguos que usaban carbón.

También se han encontrado aplicaciones para generar energía eléctrica a partir del movimiento de un gas en presencia de un ampo magnético, así como el confinamiento del estado de plasma para los reactores de energía nuclear de fusión. Por no hablar de los experimentos realizados en el LCH, en Suiza. No obstante, se sigue teniendo el problema de la gran inducción magnética generada y el volumen necesario para mantener los plasmas.

Sin embargo, es una pequeña parte de todo lo que se podría llegar a conseguir con mejor tecnología. A medida que se desarrolle ésta, la magnetohidrodinámica proporcionará mejores aplicaciones.

References

  1. J. R. Reitz, F. J. Milford, R. W. Christy, “Foundations of the Electromagnetic Theory”; Addison-Wesley Publishing Company, Inc, Massachusetts (U.S.A.), 1979
  2. H. Alfvén, “Existence of electromagnetic-hydrodynamic waves“. Nature 150: 405-406, 1942

 

 

¿Qué son las Nuevas Tecnologías? El engaño del “mundo cambiante”

Se oye mucho en estos últimos años la frase “el mundo cambia y debes de adaptarte a esos cambios”. Pero, ¿es verdad que el mundo cambia continuamente? Me imagino que lo mismo deberían pensar aquellos legionarios romanos que, viendo las heridas que provocaba el “gladius hispanicus” decidieron adoptarlo como panoplia frente a la espada larga y pesada que llevaban los galos.

Y es que el mundo, en realidad, no es tan cambiante. Al menos, no como se nos quiere hacer creer. El mundo no cambia tanto, es muy estable y aplicaciones que hoy día estamos utilizando fueron descubiertas antes. Lo que se ha avanzado es la forma de aplicarlas y venderlas.
EL PROGRESO TRAJO EL DESCANSO

Hace ya varios años, en Espinosa de Bricia, pueblo de agricultores del que es originaria mi familia, colgaron un brabán y le pusieron esa frase: “El progreso trajo el descanso”. Ese es el objetivo del progreso, que podamos descansar. Pero seguimos haciendo a la hora de sacar los frutos de la tierra lo mismo que hacíamos desde que bajamos del árbol. ¿Es el mundo tan cambiante? La tierra se tiene que seguir arando como antaño, y lo que hemos desarrollado son herramientas para facilitar el trabajo. Pero esas herramientas siguen siendo herramientas. Llamémoslo tecnología, pero no mundo cambiante.

En los últimos años ha habido una tendencia a considerar que el mundo cambia y que no nos adaptamos. ¡Si somos la especie más adaptativa de La Tierra! Nos adaptamos a todo: vivimos en climas boreales y en desérticos, vivimos con 5 horas de luz o con 9 horas, vivimos en lo más recóndito y entramos en donde queramos. ¿Cuál es la razón por la que se publicita que no somos capaces de adaptarnos a los cambios? Somos la especie que mejor se adapta a ello…

Lo que se ha perdido es el horizonte de los cambios: los cambios tienen que servir para prosperar, para mejorar. Sin embargo, hoy en día los cambios y las mejoras tecnológicas, si hacemos un balance, sólo nos aportan un 20% de lo que nos cuestan. ¿Por qué? Porque nos hemos olvidado que el brabán mejoró al antiguo arado romano sólo para que los que extraían sus beneficios de la tierra pudiesen tener más tiempo libre.

LA TECNOLOGÍA COMO MOTOR DE DESARROLLO DEL SER HUMANO

La tecnología debe ser un motor de desarrollo del ser humano, en su afán de buscar la felicidad. Sin embargo, se ha convertido en un afán de obtener dinero rápido. Y eso ha llevado a la obsolescencia programada, de la que ya hemos hablado en otro comentario.

Hace poco le preguntaba a mi sobrina: “¿Por qué quieres un teléfono smartphone?”, siendo la respuesta “Porque lo tienen mis amigos”. Bajo esa premisa incontestable (si lo tienen mis amigos, ¿no lo puedo tener yo?) uno proporciona un equipo que está en exceso sobrado para las necesidades reales de la persona que lo recibe. El brabán era necesario para tener tiempo libre, pero ¿es necesario tener una cosechadora si sólo tienes una huerta?

La tecnología desarrolla al ser humano, pero hay que acotar las necesidades reales para que éstas nunca superen a nuestros deseos. Los deseos son otra cosa.