SHARENG Divulgación

Inicio » Teoría

Category Archives: Teoría

Diseñando con la Carta de Smith 3D

La Carta de Smith es una herramienta habitual en el diseño de circuitos de RF. Desarrollada por Phillip Smith en 1939, se ha convertido en el método gráfico más popular para representar impedancias y resolver de forma sencilla operaciones con números complejos. Tradicionalmente la Carta de Smith se ha usado en su forma polar, para dos dimensiones, en un círculo de radio 1. Sin embargo, la carta en su formato 2D presenta algunas restricciones cuando se trata de representar impedancias activas de osciladores o círculos de estabilidad de amplificadores, ya que estas últimas representaciones suelen salirse de la carta. En los últimos años se ha popularizado el uso de la Carta de Smith tridimensional. Los avances en el software de representación 3D posibilitan su uso para el diseño. En esta entrada se va a tratar de conocer el manejo de la Carta de Smith tridimensional y su aplicación a un secillo amplificador de baja figura de ruido.

Cuando Phillip Smith estaba trabajando en los Laboratorios Bell, se encontró con la necesidad de tener que adaptar una antena y para ello buscó una forma de resolver el problema gráficamente. Mediante las expresiones matemáticas que rigen las impedancias en las líneas de transmisión, logró representar el plano complejo de impedancias mediante círculos de resistencia y reactancia constante. Estos círculos le facilitaban el poder representar cualquier impedancia en un espacio polar, con la máxima adaptación situada en el centro de la carta y el círculo exterior representando la reactancia pura. Tradicionalmente, la carta de Smith ha sido representada en forma polar tal y como se observa a continuación.

Fig. 1 – Carta de Smith tradicional

Las impedancias se representan normalizadas, esto es, se representa la relación entre la impedancia que se quiere representar y la impedancia de generador. El centro de la carta es la resistencia pura unidad (máxima adaptación) mientras que el círculo periférico que limita la carta es la reactancia pura. El extremo izquierdo de la carta representa el cortocircuito puro y el extremo derecho, el circuito abierto puro. La carta se hizo enseguida muy popular para poder realizar cálculos de adaptación de impedancias con líneas de transmisión usando el método gráfico. Sin embargo,las dificultades de diseño con la carta empezaron a producirse cuando se quería analizar dispositivos activos como amplificadores, para estudiar su estabilidad, y osciladores.

Obviamente, la carta limita a las impedancias de parte real positiva, pero la carta puede representar, mediante extensión del plano complejo a través de la transformación de Möbius, impedancias con parte real negativa [1]. Esta carta expandida al plano de parte real negativa se puede ver en la siguiente figura

Fig. 2-Carta de Smith expandida a parte real negativa

Esta carta, sin embargo, tiene dos inconvenientes: 1) aunque nos permite representar todas las impedancias, existe el problema del infinito complejo, por lo que sigue limitada y 2) la carta toma unas dimensiones grandes que la hacen difícil de manejar en un entorno gráfico, incluso tratándose de un entorno asistido por computador. Sin embargo, su ampliación es necesaria cuando se desean analizar los círculos de estabilidad en amplificadores, ya que en muchas ocasiones, los centros de estos círculos están situados fuera de la carta de impedancias pasivas.

En un entorno gráfico por computador, representar los círculos ya lo realiza el propio programa a través de sus cálculos, pudiendo limitar la carta a la carta pasiva y dibujando sólo una parte del círculo de estabilidad. Pero con osciladores se sigue teniendo el problema del infinito complejo, cosa que se resuelve a través de la esfera de Riemann.

ESFERA DE RIEMANN

La esfera de Riemann es la solución matemática para representar todo el plano complejo, incluido el infinito. Toda la superficie compleja se representa en una superficie esférica mediante una proyección estereográfica de dicho plano.

Fig. 3 – Proyección del plano complejo a una esfera

En esta representación el hemisferio sur de la esfera representa el origen, el hemisferio norte representa el infinito y el ecuador el círculo de radio unidad. La distribución de los valores complejos en la esfera se puede ver en la siguiente figura

Fig. 4 – Distribución de los valores complejos en la esfera

De este modo, es posible representar cualquier número del espacio complejo en una superficie manejable.

REPRESENTANDO LA CARTA DE SMITH EN UNA ESFERA DE RIEMANN

Como la Carta de Smith es una representación compleja, se puede proyectar del mismo modo a una esfera de Riemann [2], tal y como se muestra en la figura siguiente

Fig. 5 – Proyección de la Carta de Smith sobre una esfera de Riemann

En este caso, el hemisferio norte corresponde a la impedancias de parte resistiva positiva (impedancias pasivas), en el hemisferio sur se representan las impedancias con resistencia negativa (impedancias activas), en el hemisferio este se representan las impedancias inductivas y en el oeste las impedancias capacitivas. El meridiano principal se corresponde con la impedancia resistiva pura.

Así, se se desea representar una impedancia cualquiera, ya sea activa o pasiva, se puede representar en cualquier punto de la esfera, facilitando notablemente su representación. Del mismo modo, se pueden representar los círculos de estabilidad de cualquier amplificador sin tener que expandir la carta. Por ejemplo, si queremos representar los círculos de estabilidad de un transistor cuyos parámetros S a 3GHz son

S11=0,82/-69,5   S21=5,66/113,8   S12=0,03/48,8  S22=0,72/-37,6

el resultado en la carta de Smith convencional sería

Fig. 6 – Representación tradicional de los círculos de estabilidad

mientras que en la carta tridimensional sería

Fig. 7 – Círculos de estabilidad en la carta tridimensional

donde se pueden ver ubicados ambos círculos, parte en el hemisferio norte y parte en el sur. Como se puede ver, se ha facilitado enormemente su representación.

UNA APLICACIÓN PRÁCTICA: AMPLIFICADOR DE BAJO RUIDO

Vamos a ver una aplicación práctica de la carta tratando de conseguir que el amplificador de la sección anterior esté adaptado a la máxima ganancia estable y mínima figura de ruido, a 3GHz. Usando los métodos tradicionales, y conociendo los datos del transistor, que son

S11=0,82/-69,5   S21=5,66/113,8   S12=0,03/48,8  S22=0,72/-37,6

NFmin=0,62  Γopt=0,5/67,5 Rn=0,2

Representamos en la carta de Smith tridimensional esos parámetros S y dibujamos los círculos de estabilidad del transistor. Para una mejor representación usamos 3 frecuencias, con un ancho de banda de 500MHz.

Fig. 8 – Parámetros S y círculos de estabilidad del transistor (S11 S21 S12 S22 Círculo se estabilidad de entrada Círculo de estabilidad de salida)

y podemos ver los parámetros S, así como los círculos de estabilidad, tanto en el diagrama polar convencional como en la carta tridimensional. Como se puede observar, en el diagrama polar convencional los círculos se salen de la carta.

Para que un amplificador sea incondicionalmente estable, los círculos de estabilidad deberían estar situados en la zona externa de impedancia pasiva de la carta (en la carta tridimensional, en el hemisferio sur, que es la región expandida) bajo dos condiciones: si los círculos son externos a la carta pasiva y no la rodean, la zona inestable se encuentra en el interior del círculo. Si rodean a la carta, las cargas inestables se encuentran en el exterior del círculo.

Fig. 9 – Posibles situaciones de los círculos de estabilidad en la región activa

En nuestro caso, al entrar parte de los círculos a la región de impedancias pasivas, el amplificador es condicionalmente estable. Entonces las impedancias que podrían desestabilizar el amplificador son las que se encuentran en el interior de los círculos. Esto es algo que todavía no se puede ver con claridad en la carta tridimensional, no parece que lo calcule y sería interesante de incluir en posteriores versiones, porque facilitaría enormemente el diseño.

Vamos ahora a adaptar la entrada para obtener el mínimo ruido. Para ello hay que diseñar una red de adaptación que partiendo de 50Ω llegue al coeficiente de reflexión Γopt y que representa una impedancia normalizada Zopt=0,86+j⋅1,07. En la carta de Smith tridimensional abrimos el diseño y representamos esta impedancia

Fig. 10 – Representación de Γopt

Ahora usando la admitancia, nos desplazamos en la región de conductancia constante hasta que obtengamos que la parte real de la impedancia sea 1. Esto lo hacemos tanteando y obtenemos una subsceptancia de 0,5,. Como hemos tenido que incrementar 0,5–(-0,57)=1,07, esto equivale a una capacidad a tierra de 1,14pF.

Fig. 11 – Transformación hasta el círculo de impedancia con parte real unidad.

Ahora sólo queda colocar un componente que anule la parte imaginaria de la impedancia (reactancia), a resistencia constante. Como la reactancia obtenida es -1,09, hay que añadir 1,09, por lo que el valor de reactancia se anula. Esto equivale a una inducción serie de 2,9nH.

Fig. 12 – Impedancia de generador adaptada a Γopt

Ya tenemos la red de adaptación de entrada que nos consigue la mínima figura de ruido. Como el dispositivo es activo, al colocar esta red de adaptación nos cambian los parámetros S del transistor. Los nuevos parámetros son:

S11=0,54/-177   S21=8,3/61,1   S12=0,04/-3,9  S22=0,72/-48,6

que representamos en la carta de Smith para ver sus círculos de estabilidad.

Fig. 13 – Transistor con entrada adaptada a Γopt y sus círculos de estabilidad

Las regiones inestables son las internas, por lo que el amplificador sigue siendo estable.

Ahora hay que adaptar la salida para obtener la máxima ganancia, por lo que hay que cargar a S22=0,72/-48,6 un coeficiente de reflexión ΓL adaptación conjugada, pasando de 50Ω a un coeficiente de reflexión ΓL=0,72/48,6. Esta operación se realiza del mismo modo que operamos en la adaptación de la entrada. Haciendo esta operación y obteniendo los parámetros S del conjunto completo, con redes de adaptación en entrada y salida, obtenemos

S11=0,83/145   S21=12/-7.5   S12=0,06/-72,5  S22=0,005/162

La ganancia es 20·log(S21)=21,6dB, y la figura de ruido obtenida es 0,62dB, que corresponde a su NFmin. Ahora sólo queda representar en la carta de Smith tridimensional estos parámetros para observar sus círculos de estabilidad.

Fig. 14 – Amplificador de bajo ruido y sus círculos de estabilidad

En este caso, la región estable del círculo de estabilidad de entrada es la interior, mientras que en el círculo de estabilidad de salida es la exterior. Como ambos coeficientes de reflexión, S11 y S22 se encuentran en la región estable, el amplificador es entonces estable.

CONCLUSIONES

En esta entrada hemos tenido la primera toma de contacto con la Carta de Smith tridimensional. El objetivo de la entrada era estudiar su potencial respecto a una herramienta ya tradicional en la ingeniería de Microondas como es la Carta de Smith tradicional. Se observan novedosas ventajas sobre ésta en cuanto a que podemos representar los valores infinitos de la transformada de Möbius sobre una esfera de Riemann y de este modo tener una herramienta gráfica tridimensional donde se pueden representar prácticamente todas las impedancias, tanto pasivas como activas, y parámetros difíciles de representar en la carta tradicional como los círculos de estabilidad.

En su versión 1 la herramienta, que se puede encontrar en la página web 3D Smith Chart / A New Vision in Microwave Analysis and Design, presenta bastantes opciones de diseño y configuración, aunque se echa de menos algunas aplicaciones que, sin duda, irán incorporándose en futuras versiones. En este caso, una de las aplicaciones más ventajosas para la carta, al haber estudiado los círculos de estabilidad de un amplificador, es la ubicación de las regiones de estabilidad de forma gráfica. Aunque esto lo podemos resolver por cálculo, siempre es más ventajosa la imagen visual.

La aplicación tiene un manual de usuario con ejemplos explicados de forma sencilla, de modo que el diseñador se familiarice enseguida con ella. En mi opinión profesional, es una herramienta idónea para los que estamos acostumbrados a usar la carta de Smith para realizar nuestros cálculos de redes de adaptación.

REFERENCIAS

  1. Müller, Andrei; Dascalu, Dan C; Soto, Pablo; Boria, Vicente E.; ” The 3D Smith Chart and Its Practical Applications”; Microwave Journal, vol. 5, no. 7, pp. 64–74, Jul. 2012
  2. Zelley, Chris; “A spherical representation of the Smith Chart”; IEEE Microwave, vol. 8, pp. 60–66, July 2007
  3. Grebennikov, Andrei; Kumar, Narendra; Yarman, Binboga S.; “Broadband RF and Microwave Amplifiers”; Boca Raton: CRC Press, 2016; ISBN 978-1-1388-0020-5
Anuncios

Ajustando filtros mediante el método de Dishal

filtroEn Telecomunicaciones es usual tener que usar filtros para poder eliminar frecuencias indeseadas. Estos filtros suelen ser de bandas muy estrechas y se suelen utilizar técnicas de líneas acopladas, por lo que en la mayor parte de los diseños se debe recurrir a la simulación electromagnética para verificar el diseño. La simulación electromagnética, aunque es una potente herramienta, suele ser lenta si se desea optimizar mediante algoritmos convencionales. Aunque estos algoritmos están incluidos en la mayor parte de los simuladores electromagnéticos, ya sea en 2D o en 3D, si la respuesta del filtro está muy alejada de la deseada, la optimización suele ser muy lenta, por lo que se requieren otros métodos que permitan ajustar previamente antes de realizar una optimización final. Uno de los métodos es el de Dishal, en el que se puede sintonizar un filtro de varias secciones a base de sintonizar cada una de ellas. En esta entrada, sintonizaremos un filtro microstrip de tipo HAIRPIN, de resonadores λ/2 acoplados, usando un simulador electromagnético como HPMomentum.

Los filtros son los dispositivos más comunes que se usan en Telecomunicaciones. Eliminan las frecuencias interferentes y el ruido, pudiendo procesar la señal recibida o transmitida de una forma más eficiente. Tienen bastante literatura para su diseño, y existen muchas combinaciones para obtener su respuesta. Sin embargo, es uno de los dispositivos en los que es más difícil obtener un óptimo resultado. Su sintonía física requiere habilidad y entrenamiento, y su sintonía en simulación paciencia y tiempo. Sin embargo, existen técnicas que permiten la optimización de un filtro a base de usar metodologías de ajuste que permita acercarse a los parámetros ideales del filtros. Una de metodología que permite sintonizar un filtro de forma sencilla es el método de Dishal y es el que vamos a usar para sintonizar un filtro paso banda HAIRPIN para la banda de subida de LTE-UHF.

Esta metodología permite realizar el ajuste de un filtro paso banda acoplado sintonizando tanto de los factores de calidad Qi y Qo que necesita el filtro para ser cargado, como de los factores de acoplamiento Mi,i+1 que acoplarán las diferentes etapas, de forma independiente. Estos parámetros son calculados a través de los parámetros del filtro prototipo, que se pueden obtener ya sea a través de las tablas presentes en cualquier libro de diseño de filtros como en programas de cálculo como MatLab. Las expresiones para calcular los parámetros fundamentales de un filtro paso banda acoplado son

formulas

donde fh y fl son las frecuencias de corte de la banda pasante, f0 es la frecuencia central y FBW el ancho de banda fraccional. Los valores g0..gn son los coeficientes del filtro prototipo normalizado. Con estos valores obtendremos los parámetros de acoplamiento de nuestro filtro.

FILTRO PASO BANDA HAIRPIN DE 5 SECCIONES

Vamos a desarrollar un filtro paso banda en tecnología microstrip, usando una configuración HAIRPIN de resonadores λ/2 acoplados. En este filtro, la línea resonante es una línea λ/2, que se acopla al siguiente resonador mediante la sección λ/4. O más concretamente, entre un 85 y un 95% de λ/4. Su denominación HAIRPIN es debida a que tiene forma física de peine. Nuestro filtro va a tener las siguientes características fundamentales:

  • Banda pasante : 791÷821MHz (banda de UHF para LTE de subida)
  • Número de secciones: 5
  • Tipo de filtro: Chebychev 1
  • Factor de rizado: 0,1dB
  • Impedancias de generador y carga: 50Ω

Con estos valores acudimos a las tablas para obtener los coeficientes g0..g6 del filtro prototipo y aplicando las expresiones anteriores obtenemos que

  • Qi=Qo=30,81
  • M12=M45=0,0297
  • M23=M34=0,0226

Con estos coeficientes se pueden calcular las impedancias Zoe y Zoo que definirán las líneas acopladas, así como la posición de los feeds de entrada y salida. En este último caso, esta posición se puede obtener a partir de

feed

Como soporte vamos a usar un substrato Rogers, el RO3006, que tiene una εr=6,15, usando un espesor de 0,76mm y 1oz de cobre (35μm). Con este substrato, el filtro obtenido es:

filter

y con estos valores, pasaremos a la simulación.

SIMULACIÓN DEL FILTRO PASO BANDA

Usando HPMomentum, el simulador electromagnético de ADS, vamos a poder simular la respuesta de este filtro, que se puede ver en la siguiente gráfica

Resultado de la simulación del filtro

Resultado de la simulación del filtro

que, la verdad sea dicha, no se nos parece ni por asomo a lo que pretendíamos realizar. El filtro está cerca de la frecuencia f0, tiene un ancho de banda de 30MHz, pero ni está centrado ni el rizado es, ni de lejos, 0,1dB. Por tanto, habrá que recurrir a una sintonía usando el método de Dishal y así llevar el filtro a la frecuencia deseada, con el acoplamiento deseado.

Buscando la posición del alimentador

Buscando la posición del alimentador

AJUSTANDO EL Q EXTERNO

En primer lugar vamos a ajustar los factores de calidad de los resonadores de generador y de carga, que tienen que ser de 30,81. Como ambos son iguales, la sintonía obtenida servirá para los dos. Para ajustar los Qi y Qo, tendremos que buscar la posición adecuada de la alimentación para que el valor sea el deseado.

Para calcular el Qext, se evalúa el coeficiente de reflexión del resonador y se obtiene su retardo de grupo. El factor de calidad será

qext Cuando hacemos la primera simulación y representamos Qext, obtenemos

qext2

donde se puede comprobar que ni el filtro está centrado ni su factor de calidad es el deseado. Para centrar el filtro, aumentamos la distancia entre las líneas en 1,1mm y recortamos las líneas resonantes en 0,34mm. De este modo, obtenemos

qext2_2

en el que ya están centradas las líneas, siendo el Qext de 37,28. Ahora aumentamos la distancia del feed al extremo de la pista en 0,54mm y obtenemos el Qext deseado.

qext2_3

Ya tenemos centrado el filtro y con el Qext requerido. Ahora tocaría ajustar los acoplamientos.

AJUSTE DE LOS ACOPLAMIENTOS

Para ajustar los acoplamientos, primero separamos el feed unos 0,2mm de la línea, y hacemos un espejo de la misma para que quede como sigue

coup_1

En este caso, para medir el acoplamiento usamos los picos que salen en la transmisión (S21), y aplicamos la expresión

coup_2

El resultado de la simulación, para el primer acoplo, es

coup_3

que como podemos comprobar está en el valor requerido.

En el caso del segundo acoplo

coup_4

que también está cerca de su valor requerido. Por tanto, con los cambios obtenidos, simulamos el filtro total y obtenemos

Filtro después de la primera sintonía

Filtro después de la primera sintonía

que ya se acerca al filtro deseado.

REITERANDO LA SINTONÍA

Si reiteramos sobre la sintonía, podremos llegar a mejorar el filtro hasta los valores que deseemos. Así, disminuyendo el Qext obtenemos

Disminución del Qext

Disminución del Qext

que supone ya una mejora importante. Jugando ahora con los acoplamientos, disminuyéndolos, llegamos a obtener

filt_3

Ajuste de los acoplamientos

que podemos dar por válido. Por tanto, el método de Dishal nos ha permitido, a partir de los parámetros calculados, ajustar el filtro hasta obtener las características deseadas.

CONCLUSIONES

Hemos analizado el método de Dishal como herramienta para el ajuste y sintonización de un filtro paso banda de 5 secciones, con óptimos resultados. La sencillez del método permite ajustar los principales parámetros de forma independiente, de manera que el ajuste final u optimización sean más sencillas, cosa de agradecer en simuladores electromagnéticos, que requieren de potencia de cálculo y tiempo de simulación. Vemos que el método, realizado paso a paso, nos permite ir ajustando las características hasta obtener el resultado deseado, por lo que podemos concluir que es un método muy útil en sintonización de filtros, tanto en discretos como en distribuidos, y que bien usado permite acercarse lo suficientemente al resultado final como para que la optimización electromagnética sea innecesaria.

REFERENCIAS

  1. Zverev, Anatol I., “Handbook of Filter Synthesys”, Hoboken, New Jersey : John Wiley & Sons Inc., 1967. ISBN 978-0-471-74942-4.

Análisis estadísticos usando el método de Monte Carlo (II)

Art02_fig01En la anterior entrada mostramos con una serie de ejemplos simples cómo funciona el método de Monte Carlo para realizar análisis estadísticos. En esta entrada vamos a profundizar un poco más, haciendo un análisis estadístico más profundo sobre un sistema algo más complejo, analizando una serie de variables de salida y estudiando sus resultados desde una serie de ópticas que resultarán bastante útiles. La ventaja que tiene la simulación es que podemos realizar una generación aleatoria de variables, y además, podemos establecer una correlación de esas variables para conseguir distintos efectos al analizar el funcionamiento de un sistema. Así, cualquier sistema no sólo se puede analizar estadísticamente mediante una generación aleatoria de entradas, sino que podemos vincular esa generación aleatoria a análisis de lotes o fallos en la producción, así como su recuperación post-producción.

Los circuitos que vimos en la anterior entrada eran circuitos muy sencillos que permitían ver cómo funciona la asignación de variables aleatorias y el resultado obtenido cuando estas variables aleatorias forman parte de un sistema más complejo. Con este análisis, podíamos comprobar un funcionamiento y hasta proponer correcciones que, por sí solas, limitasen las variaciones estadísticas del sistema final.

En este caso, vamos a estudiar el efecto dispersivo que tienen las tolerancias sobre uno de los circuitos más difíciles de conseguir su funcionamiento de forma estable: el filtro electrónico. Partiremos de un filtro electrónico de tipo paso banda, sintonizado a una determinada frecuencia y con una anchura de banda de paso y rechazo determinadas, y realizaremos varios análisis estadísticos sobre el mismo, para comprobar su respuesta cuando se somete a las tolerancias de los componentes.

DISEÑO DEL FILTRO PASO BANDA

Vamos a plantear el diseño de un filtro paso banda, centrado a una frecuencia de 37,5MHz, con un ancho de banda de 7MHz para unas pérdidas de retorno mayores que 14dB, y un ancho de banda de rechazo de 19MHz, con atenuación mayor de 20dB. Calculando el filtro, se obtienen 3 secciones, con el siguiente esquema

Filtro paso banda de tres secciones

Filtro paso banda de tres secciones

Con los valores de componentes calculados, se buscan valores estándar que puedan hacer la función de transferencia de este filtro, cuya respuesta es

Respuesta en frecuencia del filtro paso banda

Respuesta en frecuencia del filtro paso banda

donde podemos ver que la frecuencia central es 37,5MHz, que las pérdidas de retorno están por debajo de 14dB en ±3,5MHz de la frecuencia central y que el ancho de banda de rechazo es de 18,8MHz, con 8,5MHz a la izquierda de la frecuencia central y 10,3MHz a la derecha de la frecuencia central.

Bien, ya tenemos diseñado nuestro filtro, y ahora vamos a hacer un primer análisis estadístico, considerando que las tolerancias de los condensadores son ±5%, y que las inducciones son ajustables. Además, no vamos a indicar correlación en ninguna variable, pudiendo tomar cada variable un valor aleatorio independiente de la otra.

ANÁLISIS ESTADÍSTICO DEL FILTRO SIN CORRELACIÓN ENTRE VARIABLES

Como vimos en la entrada anterior, cuando tenemos variables aleatorias vamos a tener dispersión en la salida, así que lo óptimo es poner unos límites según los cuales podremos considerar el filtro válido, y a partir de ahí analizar cuál es su respuesta. Para ello se recurre al análisis YIELD, que es un análisis que, usando el algoritmo de Monte Carlo, nos permite comprobar el rendimiento o efectividad de nuestro diseño. Para realizar este análisis hay que incluir las especificaciones según las cuales se puede dar el filtro por válido. Las especificaciones elegidas son unas pérdidas de retorno superiores a 13,5dB entre 35÷40MHz, con una reducción de 2MHz en la anchura de banda, y una atenuación mayor de 20dB por debajo de 29MHz y por encima de 48MHz. Haciendo el análisis estadístico obtenemos

Análisis estadístico del filtro. Variables sin correlación.

Análisis estadístico del filtro. Variables sin correlación.

que, sinceramente, es un desastre: sólo el 60% de los posibles filtros generados por variables con un ±5% de tolerancia podrían considerarse filtros válidos. El resto no serían considerados como válidos en un control de calidad, lo que significaría un 40% de material defectivo que se devolvería al proceso de producción.

De la gráfica se puede ver, además, que son las pérdidas de retorno las principales responsables de que exista tan bajo rendimiento. ¿Qué podemos hacer para mejorar este valor? En este caso, tenemos cuatro variables aleatorias. Sin embargo, dos de ellas son del mismo valor (15pF), que cuando son montadas en un proceso productivo, suelen pertenecer al mismo lote de fabricación. Si estas variables no presentan ninguna correlación, las variables pueden tomar valores completamente dispares. Cuando las variables no presentan correlación, tendremos la siguiente gráfica

Condensadores C1 y C3 sin correlación

Condensadores C1 y C3 sin correlación

Sin embargo, cuando se están montando componentes de un mismo lote de fabricación, las tolerancias que presentan los componentes varían siempre hacia el mismo sitio, por tanto hay correlación entre dichas variables.

ANÁLISIS ESTADÍSTICO DEL FILTRO CON CORRELACIÓN ENTRE VARIABLES

Cuando usamos la correlación entre variables, estamos reduciendo el entorno de variación. En este caso, lo que analizamos no es un proceso totalmente aleatorio, sino lotes de fabricación en los cuales se producen las variaciones. En este caso, hemos establecido la correlación entre las variables C1 y C3, que son del mismo valor nominal y que pertenecen la mismo lote de fabricación, por lo que ahora tendremos

Condensadores C1 y C3 con correlación

Condensadores C1 y C3 con correlación

donde podemos ver que la tendencia a la variación en cada lote es la misma. Estableciendo entonces la correlación entre ambas variables, estudiamos el rendimiento efectivo de nuestro filtro y obtenemos

Análisis estadístico con C1, C2 variables correladas

Análisis estadístico con C1, C2 variables correladas

que parece todavía más desastroso. Pero ¿es así? Tenemos que tener en cuenta que la correlación entre variables nos ha permitido analizar lotes completos de fabricación, mientras que en el análisis anterior no se podía discernir los lotes. Por tanto, lo que aquí hemos obtenido son 26 procesos de fabricación completos exitosos, frente al caso anterior que no permitía discernir nada. Por tanto, esto lo que nos muestra es que de 50 procesos completos de fabricación, obtendríamos que 26 procesos serían exitosos.

Sin embargo, 24 procesos completos tendrían que ser devueltos a la producción con todo el lote. Lo que sigue siendo, realmente, un desastre y el Director de Producción estaría echando humo. Pero vamos a darle una alegría y a justificar lo que ha intentado siempre que no exista: el ajuste post-producción.

ANÁLISIS ESTADÍSTICO CON AJUSTE POST-PRODUCCIÓN

Como ya he dicho, a estas alturas el Director de Producción está pensando en descuartizarte poco a poco, sin embargo, queda un as en la manga, recordando que las inducciones las hemos puesto de modo que sean ajustables. ¿Tendrá esto éxito? Para ello hacemos un nuevo análisis, dando valores variables en un entorno de ±10% sobre los valores nominales, y activamos el proceso de ajuste post-producción en el análisis y ¡voilà! Aun teniendo un defectivo antes del ajuste muy elevado, logramos recuperar el 96% de los filtros dentro de los valores que se habían elegido como válidos

Análisis estadístico con ajuste post-producción

Análisis estadístico con ajuste post-producción

Bueno, hemos ganado que el Director de Producción no nos corte en cachitos, ya que el proceso nos está indicando que podemos recuperar la práctica totalidad de los lotes, eso sí, con el ajuste, por lo que con este análisis podemos mostrar no sólo el defectivo sino la capacidad de recuperación del mismo.

Podemos representar cómo han variado las inducciones (en este caso las correspondientes a las resonancias en serie) para poder analizar cuál es la sensibilidad del circuito frente a las variaciones más críticas. Este análisis permite establecer un patrón de ajuste para reducir el tiempo en el que se debe de tener un filtro exitoso.

Análisis de los patrones de ajuste en las inducciones de las resonancias serie

Análisis de los patrones de ajuste en las inducciones de las resonancias serie

Así, con este tipo de análisis, realizado en el mismo momento del diseño, es posible tomar decisiones que fijen los patrones posteriores de la fabricación de los equipos y sistemas, pudiendo establecer patrones fijos de ajuste post-producción sencillos al conocer de antemano la respuesta estadística del filtro diseñado. Una cosa muy clara que he tenido siempre, es que cuando no he hecho este análisis, el resultado es tan desastroso como muestra la estadística, así que mi recomendación como diseñador es dedicarle tiempo a aprender cómo funciona y hacerle antes de que le digas a Producción que tu diseño está acabado.

CONCLUSIONES

En esta entrada hemos querido mostrar un paso más en las posibilidades del análisis estadístico usando Monte Carlo, avanzando en las posibilidades que muestra el método a la hora de hacer estudios estadísticos. El algoritmo nos proporciona resultados y nos permite fijar condicionantes para realizar diversos análisis y poder optimizar más si se puede cualquier sistema. Hemos acudido hasta a un ajuste post-producción, a fin de calmar la ira de nuestro Director de Producción, que ya estaba echando humo con el defectivo que le estábamos proporcionando. En la siguiente entrada, abundaremos un poco más en el método con otro ejemplo que nos permita ver más posibilidades en el algoritmo.

REFERENCIAS

  1. Castillo Ron, Enrique, “Introducción a la Estadística Aplicada”, Santander, NORAY, 1978, ISBN 84-300-0021-6.
  2. Peña Sánchez de Rivera, Daniel, “Fundamentos de Estadística”, Madrid,  Alianza Editorial, 2001, ISBN 84-206-8696-4.
  3. Kroese, Dirk P., y otros, “Why the Monte Carlo method is so important today”, 2014, WIREs Comp Stat, Vol. 6, págs. 386-392, DOI: 10.1002/wics.1314.

 

Análisis estadísticos usando el método de Monte Carlo (I)

imagesCuando nos enfrentamos a cualquier diseño electrónico, por lo general disponemos de métodos deterministas que permiten el cálculo de lo que estamos diseñando, de modo que podemos prever los parámetros que vamos a encontrar en la medida física de cualquier dispositivo o sistema. Estos cálculos previos facilitan el desarrollo y normalmente los resultados suelen coincidir en gran medida con la predicción. Sin embargo, sabemos que todo aquello que creemos o fabriquemos siempre está sometido a tolerancias. Y esas tolerancias provocan variaciones en los resultados que muchas veces no se pueden analizar de forma sencilla, sin una herramienta de cálculo potente. En 1944, Newmann y Ulam desarrollaron un método estadístico no determinista que denominaron Método de Monte Carlo. En las siguientes entradas vamos a analizar el uso de este potente método para la predicción de posibles tolerancias en circuitos, sobre todo cuando son fabricados de forma industrial.

En un sistema o proceso, el resultado final es consecuencia de las variables de entrada. Estas generan una respuesta que puede ser determinada tanto si el sistema es lineal como si es no lineal. A la relación entre la respuesta o salida del sistema y las variables de entrada la denominamos función de transferencia, y su conocimiento nos permite evaluar cualquier resultado en función de la excitación de entrada.

Sin embargo, hay que tener en cuenta que las variables de entrada son variables aleatorias, con su propia función de distribución, debido a que están sometidas a procesos estocásticos, aunque su comportamiento es predecible gracias a la teoría de la probabilidad. Por ejemplo, cuando describimos una medida de cualquier tipo, solemos representar su valor nominal o medio, así como el entorno de error asociado en el que esa magnitud medida puede estar. Esto nos permite limitar el entorno en el cual la magnitud es correcta y decidir cuándo la magnitud se comporta de modo incorrecto.

Durante muchos años, después de haber aprendido a transformar con éxito los resultados obtenidos mediante simulación en resultados físicos reales, con comportamientos predecibles y extrayendo conclusiones válidas, me he dado cuenta que en la mayoría de las ocasiones la simulación se reduce a obtener un resultado apetecido, sin profundizar en absoluto en ese resultado. Sin embargo, la mayoría de los simuladores están dotados de algoritmos estadísticos útiles que, correctamente utilizados, permiten al usuario de la aplicación obtener una serie de datos que puede usar para el futuro y permiten predecir el comportamiento de cualquier sistema, o al menos, analizar qué es lo que se puede producir.

Sin embargo, esos métodos que los simuladores incluyen nos suelen ser utilizados. Ya sea por falta de conocimiento de patrones estadísticos, ya sea por desconocimiento de cómo usar esos patrones. Por tanto, en esta serie de entradas vamos a desgranar el método de Monte Carlo que podemos encontrar en un simulador de circuitos e descubrir un potencial importante que es desconocido para muchos de los usuarios de los simuladores de circuitos.

LOS COMPONENTES COMO VARIABLES ALEATORIAS

Los circuitos electrónicos están formados por componentes electrónicos simples, pero que tienen un comportamiento estadístico, debido a los procesos de fabricación. No obstante, los fabricantes de componentes delimitan correctamente los valores nominales y el entorno de error en que se mueven. Así, un fabricante de resistencias no sólo publica sus valores nominales y dimensiones. También publica los entornos de error en los que esa resistencia varía, el comportamiento con la temperatura, el comportamiento con la tensión, etc. Todos estos parámetros, convenientemente analizados, proporcionan una información importante que, bien analizada dentro de una potente herramienta de cálculo como es el simulador, permite predecir el comportamiento de circuito total.

En este caso se va a analizar exclusivamente el entorno de error en el valor nominal. En una resistencia, cuando el fabricante define el valor nominal (en este caso, vamos a suponer 1kΩ) y expresa que tiene una tolerancia de ±5%, quiere decir que el valor de la resistencia puede estar comprendido entre 950Ω y 1,05kΩ. En el caso de un transistor, su ganancia de corriente β puede tomar un valor entre 100 y 600 (por ejemplo, el BC817 de NXP), por lo que puede haber una variación de corriente de colector importante e incontrolable. Por tanto, conociendo estos datos, podemos analizar el comportamiento estadístico de un circuito eléctrico gracias a la rutina de Monte Carlo.

Analicemos primero la resistencia: hemos dicho que la resistencia tiene una tolerancia de ±5%. Entonces, vamos a analizar usando el simulador el comportamiento de esta resistencia usando la rutina de Monte Carlo. A priori, desconocemos qué función densidad de probabilidad tiene la resistencia, aunque lo más habitual es una función de tipo gaussiano, cuya expresión es ya conocida

normal

donde μ es el valor medio y σ² es la varianza. Analizando con el simulador, mediante el método de Monte Carlo y para 2000 muestras, se puede obtener una representación de la variación del valor nominal de la resistencia, obteniendo un histograma como el que se muestra en la figura siguiente

Distribución de los valores de la resistencia usando el análisis de Monte Carlo

Distribución de los valores de la resistencia usando el análisis de Monte Carlo

El algoritmo de Monte Carlo introduce valor en la variable cuya distribución corresponde a una gaussiana, pero los valores que toma son en todo momento aleatorios. Si esas 2000 muestras se tomasen en 5 procesos de 400 muestras cada uno, seguiríamos teniendo una tendencia a la gaussiana, pero sus distribuciones serían diferentes

Distribuciones gaussianas con varios lotes

Distribuciones gaussianas con varios lotes

Por tanto, trabajando convenientemente con las variables aleatorias, se puede extraer un estudio completo de la fiabilidad del diseño realizado, así como de la sensibilidad que tiene cada una de las variables que se utilizan. En el siguiente ejemplo, vamos a proceder al análisis del punto de operación de un transistor bipolar convencional, cuya variación de β está comprendida entre 100 y 600, con un valor medio de 350 (comprendida β con una distribución gaussiana), polarizado con resistencias con una tolerancia nominal de ±5%, y estudiando la variación de la corriente de colector en 100 muestras.

ANÁLISIS DEL COMPORTAMIENTO ESTADÍSTICO DE UN BJT EN DC

Para estudiar el comportamiento de un circuito de polarización con transistor bipolar, partimos del circuito como el de la figura

Circuito de polarización de un BJT

Circuito de polarización de un BJT

donde las resistencias tienen tolerancias totales de ±5% y el transistor tiene una variación de β entre 100 y 600, con un valor nominal de 350. El punto de operación es Ic=1,8mA, Vce=3,2V. Haciendo el análisis de Monte Carlo para 100 muestras, obtenemos el siguiente resultado

Variación de la corriente del BJT en función de las variables aleatorias

Variación de la corriente del BJT en función de las variables aleatorias

Por la forma de la gráfica, se puede comprobar que el resultado converge a una gaussiana, donde el valor medio predominante es Ic=1,8mA, con una tolerancia de ±28%. Supongamos ahora que hacemos el mismo barrido que antes, en varios lotes de proceso, de 100 muestras cada uno. El resultado obtenido es

Variación de la corriente del BJT para varios lotes

Variación de la corriente del BJT para varios lotes

donde podemos ver que en cada lote tendremos una curva que converge a una gaussiana. En este caso, la gaussiana tiene un valor medio μ=1,8mA y una varianza σ²=7%. De este modo, podemos analizar cada proceso como un análisis estadístico global como por lotes. Supongamos que ahora β es una variable aleatoria con una función de distribución uniforme entre 100 y 600. Analizando sólo para las 100 muestras, se obtiene la curva

Distribución con b uniforme

Distribución con BETA uniforme

y se puede observar que la tendencia de la corriente es a converger a una distribución uniforme, aumentando el rango de tolerancia de la corriente y aumentando la probabilidad en los extremos de su valor. Por tanto, también podemos estudiar cómo se comporta el circuito cuando tenemos distintas funciones de distribución gobernando cada una de las variables.

Visto que, con el método de Monte Carlo podemos analizar el comportamiento en términos de tolerancias de un circuito complejo, también del mismo modo nos ayudará a estudiar cómo podemos corregir esos resultados. Por tanto, a lo largo de las entradas vamos a profundizar cada vez más en el potencial del método y lo que se puede conseguir con él.

CORRIGIENDO LAS TOLERANCIAS

En el circuito básico que hemos utilizado, al caracterizar la β del transistor como una variable uniforme, hemos aumentado la probabilidad de haya posibles valores de corriente que caigan en valores indeseados. Esto es uno de los puntos más problemáticos de los transistores bipolares y de efecto campo, las variaciones de sus ganancias en corriente. Vamos a ver, con un sencillo ejemplo, qué es lo que ocurre cuando usamos un circuito de corrección de la variación de β, como puede ser el circuito clásico de autopolarización por emisor

Circuito con autopolarización por emisor

Circuito con autopolarización por emisor

Usando este circuito, volvemos a hacer un análisis de Monte Carlo y lo comparamos con el análisis obtenido en el caso anterior,pero usando 1000 muestras. El resultado obtenido es

Resultados con ambos circuitos

Resultados con ambos circuitos

donde se puede ver que se ha incrementado la probabilidad en valores en torno a los 2mA, reduciendo la densidad de probabilidad en valores bajos de corriente y estrechando la distribución. Por tanto, el método de Monte Carlo no sólo es un método que nos permite analizar el comportamiento de un circuito cuando se somete a una estadística, sino que nos permitirá optimizar nuestro circuito y ajustarlo a los valores límite deseados. Usado convenientemente, es una potente herramienta de cálculo que mejorará el conocimiento de nuestros circuitos.

CONCLUSIONES

En esta primera entrada de una serie dedicada al método de Monte Carlo, en la que hemos querido presentar el método y su utilidad. Como hemos podido ver en el ejemplo, el uso del método de Monte Carlo proporciona datos de mucha utilidad, sobre todo si deseamos conocer cuáles son las limitaciones y variaciones del circuito que estamos analizando. Por otro lado, nos permite mejorar éste a través de los estudios estadísticos, además de fijar los patrones para la verificación del mismo en un proceso productivo.

En las siguientes entradas profundizaremos más en el método, realizando un estudio más exhaustivo del método a través de un circuito concreto de uno de mis proyectos más recientes, analizando cuáles son los resultados esperados y las diferentes simulaciones que se pueden realizar usando el método de Monte Carlo, como las de caso peor, sensibilidad, y optimización post-producción.

REFERENCIAS

  1. Castillo Ron, Enrique, “Introducción a la Estadística Aplicada”, Santander, NORAY, 1978, ISBN 84-300-0021-6.
  2. Peña Sánchez de Rivera, Daniel, “Fundamentos de Estadística”, Madrid,  Alianza Editorial, 2001, ISBN 84-206-8696-4.
  3. Kroese, Dirk P., y otros, “Why the Monte Carlo method is so important today”, 2014, WIREs Comp Stat, Vol. 6, págs. 386-392, DOI: 10.1002/wics.1314.

 

Influencia de los campos electromagnéticos en la dinámica de los fluidos

la_caza_del_submarino_rusoAunque parezca lo contrario, en esta entrada no vamos a hablar de novelas de espías, pero sí vamos a usar un argumento de la trama de una conocida novela de espionaje para presentar la teoría magnetohidrodinámica. Ésta es una disciplina de la física, que forma parte de la teoría de campos y analiza el movimiento de fluidos con carga eléctrica en presencia de un campo electromagnético y sus posibles aplicaciones. Comprendiendo los principios de la dinámica de fluidos, llegaremos a las ecuaciones que constituyen la base de la teoría, sus conclusiones y su actual utilización.

Los que conozcan la trama de la novela de Tom Clancy “The hunt of Red October”, sabrán que trata sobre la deserción de un submarino soviético de la clase Typhoon, dotado de un sistema de propulsión silencioso y difícilmente detectable por el sonar. En la novela, se le describe como “propulsión magnetohidrodinámica” y consiste en generar flujo de corriente hidráulica a lo largo de la nave usando campos magnéticos. Este flujo permite su desplazamiento sin usar los motores convencionales, aprovechando las características conductivas del agua salada. Este sistema de propulsión silenciosa convertía a la nave en algo letal y peligroso de verdad, puesto que podría acercarse a la costa de los EE.UU. sin ser detectado y lanzar un ataque con cabezas nucleares sin que nadie lo pudiese evitar. Esta es la trama, pero, ¿cuánto hay de cierto en la misma? ¿Existe un método de propulsión o un sistema que provoque el movimiento de un fluido por la presencia de un campo electromagnético? ¿Y a la inversa? ¿Podemos generar un campo electromagnético sólo usando el movimiento de un fluido cargado?

Aunque pueda parecer que, al tratarse de una novela de espías y acostumbrados como estamos a la tendencia de la ficción a crear ciertas bases argumentales, a veces ilusorias, para dotar de cierto dramatismo a la trama, lo cierto es que la teoría magnetohidrodinámica es muy real. Tanto, que el primer efecto destacable de la misma lo podemos comprobar simplemente con la presencia del campo magnético terrestre. Este es fruto del movimiento del núcleo interno de la tierra, compuesto de una capa de hierro líquido (fluido) que envuelve a una gran masa de hierro sólido. Este núcleo , que se mueve acompasado por la rotación de la Tierra, tiene cargas en movimiento que generan una corriente eléctrica, y esa corriente eléctrica genera el campo magnético que protege a la Tierra de los embates de partículas de alta energía que proceden de nuestra estrella, el Sol.

El propio Sol, que es una nube de gas en estado de plasma, tiene poderosos campos magnéticos que determinan el movimiento de las partículas que constituyen el plasma en su interior. Por tanto, la teoría magnetohidrodinámica que usa Clancy en esa trama es muy real. Vamos entonces a desvelar sus bases.

DINÁMICA DE FLUIDOS: LAS ECUACIONES DE NAVIER–STOKES

Un fluido es un medio material continuo formado por moléculas donde sólo hay fuerzas de atracción débil, que se encuentra en uno de estos tres estados de la materia: líquido, gaseoso o plasma. La dinámica de fluidos es la parte de la física que se ocupa del estudio del movimiento de estos medios en cualquiera de estos estados, siendo la masa del fluido la parte que se desplaza de un punto a otro.

Del mismo modo que en campos electromagnéticos definíamos la corriente eléctrica como la variación de la carga con el tiempo, en los fluidos hablaremos de un flujo de corriente ψ que es la variación de la masa M del fluido respecto del tiempo.

Si tomamos una superficie donde hay ni partículas de masa mi que se mueven a una velocidad vi, podemos definir una densidad de flujo de corriente ℑ, que se expresa como

Flujo de corriente debida a partículas de masa m

Flujo de corriente debida a partículas de masa m

Vamos a considerar, como se muestra en la figura, que nuestro fluido es un medio material que tiene todas las partículas de la misma masa, por lo que el producto ni⋅mi se puede extraer del sumatorio, quedando entonces una velocidad v  que es la suma vectorial de todas las velocidades de las partículas del fluido.

La relación entre el flujo de corriente y la densidad de flujo de corriente es una integral a lo largo de una superficie S. Si integramos el flujo de corriente total en una superficie cerrada, por la conservación de la masa, tendremos que es igual  es la variación de la masa con respecto al tiempo, y siendo la densidad la masa por unidad de volumen, podemos escribir que

continuity1

Como este flujo de corriente se opone a la variación de la masa respecto del tiempo, y la masa es la integral de volumen de la densidad del fluido ρMy aplicando el teorema de la divergencia, podemos escribir esta expresión en su forma diferencial

continuity2

que es la ecuación de continuidad de un fluido y que representa la conservación de la masa neta dentro del fluido. Esta es una de las ecuaciones de Navier-Stokes, primordial para comprender el movimiento de las partículas del fluido.

Para la otra ecuación, debemos de recurrir a la derivada sustancial. Esta es una descripción que incluye no sólo la variación con respecto al tiempo de la magnitud física del fluido, sino que además incluye la variación de la misma respecto de la posición. La expresión de la derivada sustancial es

sustancial

donde v es la velocidad del fluido y  el operador diferencial que ya vimos en la entrada sobre radioenlaces. Como el momento lineal del fluido se conserva, cuando interviene la fuerza de la gravedad , actúa además una presión P en sentido contrario al movimiento en el fluido y contraponiéndose a las deformaciones una viscosidad μobtenemos que

Esta es la ecuación del movimiento de un fluido, y es no lineal debido a la derivada sustancial. Por tanto, en un fluido intervienen no sólo las fuerzas aplicadas en el fluido, sino también la presión de éste y su viscosidad. Si el fluido no presentase viscosidad, y aplicando la derivada sustancial  a la ecuación anterior, podemos obtener un caso particular

noviscoso

que nos define la ecuación del movimiento de un fluido no viscoso.

DINÁMICA DE FLUIDOS: MAGNETOHIDRODINÁMICA

Si el fluido presenta partículas cargadas y aplicamos un campo electromagnético, con componentes E y B, la fuerza que interviene en este caso no es la gravedad, sino la fuerza de Lorenz que aplica el campo magnético

florenz

donde J es la densidad de corriente eléctrica en el fluido y B el campo magnético aplicado. En la expresión desarrollada, obtenida a partir del desarrollo de la Ley de Ampere y una de las identidades del operador diferencial , obtenemos dos términos. El primero es una fuerza de tensión magnética mientras que el segundo término se asemeja a una presión magnética producida por la densidad de energía magnética del campo. Sustituyendo F en la expresión obtenida en el apartado anterior y considerando un fluido no viscoso, tendremos que

movimiento2

Teniendo en cuenta que, según las ecuaciones de Maxwell, la divergencia del campo magnético es nula, si consideramos un campo magnético unidireccional, las variaciones espaciales de la divergencia son perpendiculares al campo, por lo que la fuerza de tensión magnética se anula y la expresión anterior queda

movimiento3

Si el fluido está en estado de plasma, tenemos que la Ley de Ohm se puede escribir como

ohm

debido a que en este estado la conductividad tiende a ser infinita y para mantener el flujo de corriente, la fuerza aplicada debe ser lo más baja posile. De este modo, la Ley de Faraday queda como

faraday

CONCLUSIONES DE LAS ECUACIONES

Como hemos podido comprobar, la magnetohidrodinámica es, en realidad, una consecuencia de aplicar campos electromagnéticos a fluidos que poseen carga eléctrica, y en esto se basaba Clancy para “propulsar” su Octubre Rojo. No obstante, los intentos de generar un propulsor naval de estas características se han quedado en prototipos construidos en los años 60 puesto que las inducciones magnéticas que requerían eran elevadas (del orden de más de 5 Tesla) en compartimientos muy voluminosos (centenares de m3). Por tanto, el submarino de la clase Typhoon cumplía con las exigencias de proporcionar el debido dramatismo a la novela, sin despreciar por ello la base científica en la que se basaba, debido al tamaño de este tipo de naves, considerados por los EE.UU. como colosos de las profundidades debido al desplazamiento de toneladas que eran capaces de propulsar.

No quiere decir que la aplicación de la magnetohidrodinámica esté actualmente aparcada. Debido a ella, los astrofísicos han logrado generar modelos basados en estas ecuaciones para determinar las trayectorias de las partículas en el Sol y predecir erupciones solares. Y los geofísicos, comprender mejor la estructura de los núcleos de los planetas.

Además, estas técnicas son utilizadas desde hace años también en metalurgia: a medida que calentamos un metal transformándolo en un fluido, incrementamos notablemente su conductividad, de modo que se puede aplicar la Ley de Ohm para los plasmas. Esto evita, en los procesos de fundición y generación de aleaciones, que el metal entre en contacto con el crisol y adquiera escoria, mejorando notablemente la calidad de la aleación. Es el principio de los altos hornos eléctricos, que vinieron a sustituir a los antiguos que usaban carbón.

También se han encontrado aplicaciones para generar energía eléctrica a partir del movimiento de un gas en presencia de un ampo magnético, así como el confinamiento del estado de plasma para los reactores de energía nuclear de fusión. Por no hablar de los experimentos realizados en el LCH, en Suiza. No obstante, se sigue teniendo el problema de la gran inducción magnética generada y el volumen necesario para mantener los plasmas.

Sin embargo, es una pequeña parte de todo lo que se podría llegar a conseguir con mejor tecnología. A medida que se desarrolle ésta, la magnetohidrodinámica proporcionará mejores aplicaciones.

References

  1. J. R. Reitz, F. J. Milford, R. W. Christy, “Foundations of the Electromagnetic Theory”; Addison-Wesley Publishing Company, Inc, Massachusetts (U.S.A.), 1979
  2. H. Alfvén, “Existence of electromagnetic-hydrodynamic waves“. Nature 150: 405-406, 1942

 

 

Estudio del comportamiento de un material piezoeléctrico (II)

En la entrada anterior habíamos estudiado el fenómeno piezoeléctrico a partir de las ecuaciones constitutivas que relacionan los campos eléctricos y mecánicos generados en el material. Los materiales piezoeléctricos se utilizan, gracias a este comportamiento, como componentes electrónicos con muy alta calidad. Su uso en filtros SAW, en resonadores BAW, en cristales de Cuarzo, para zumbadores e incluso como cargadores en Energy Harvesting hacen necesario, cada vez más, tener un modelo de circuito equivalente que defina correctamente el componente y su respuesta electroacústica. En esta entrada vamos a presentar un modelo, extraído en los años 40-50 por W.P. Mason y que sintetiza con bastante precisión los fenómenos electroacústicos tanto en su modelo lineal como no lineal.

MODELO DE MASON: EXTRACCIÓN

piezoelectrico

Esquema de un piezoeléctrico

Hemos dicho que un piezoeléctrico es un material electromecánico en el que aparecen fuerzas mecánicas cuando se le aplican fuerzas eléctricas y, recíprocamente, eléctricas cuando se aplican fuerzas mecánicas. La figura muestra un esquema dimensional de un material piezoeléctrico.

En el piezoeléctrico aplicamos un potencial eléctrico E⋅δz, y en ambas superficies del piezoeléctrico aparecen sendas tensiones T1 y T2, en cada una de las superficies del material. Aparecen también las velocidades de desplazamiento v1 y v2, que están relacionadas con el desplazamiento u a través de

velci

Por último, aparece una corriente eléctrica I en los electrodos del potencial eléctrico. Por último, las magnitudes de A y d son la superficie en m2 y el espesor del dieléctrico en m.

En la entrada anterior estudiamos el comportamiento piezoeléctrico a partir de sus ecuaciones constitutivas. Recordando entonces cómo se escribían estas ecuaciones, teníamos

consti

Se tiene que cumplir, además, la conservación de la energía a través de la ecuación de Lipmann

condi_campo

Combinando adecuadamente estas ecuaciones, habíamos obtenido una ecuación de onda definida por

onda2que corresponde a una onda de propagación.

Utilizando la expresión que liga v con la variación temporal de u, podemos escribir la 2ª Ley de Newton como

second_newton

Recordando, además, que la deformación S derivaba del gradiente de u, calculamos la variación de S con respecto al tiempo y obtenemos su relación con el gradiente de v. Expresándolo para un sistema unidimensional en el eje z, obtenemos

deforma_time

y despejando S de las ecuaciones constitutivas, obtenemos

segunda

Escalamos ahora las ecuaciones, multiplicando por A  los términos de ambas ecuaciones, y agrupándolas, obtenemos

telegraph

Si comparamos este resultado con las ecuaciones del Telegrafista que define una línea de transmisión para las ondas electromagnéticas, podemos comprobar que son similares. La primera relaciona la variación espacial de la tensión -A·T con la variación temporal de la corriente A·v, y correspondería a una inducción por unidad de longitud similar a la de un elemento diferencial de una línea de transmisión.

En la segunda ecuación, que relaciona la variación espacial de la corriente A·v, con respecto a una variación temporal de una tensión, representa una capacidad por unidad de longitud similar a la de la línea de transmisión. Sin embargo, en el segundo término de la ecuación, tenemos una dependencia con la tensión -A·T, que sería una línea de transmisión convencional, y otra dependencia con el desplazamiento eléctrico D. Esa dependencia se representa mediante una línea de transmisión flotante como la que se muestra en la figura siguiente.

linea_t

Modelo acústico del piezoeléctrico, en línea de transmisión, a partir de las ecuaciones del Telegrafista

De este modo ya tenemos asemejada la parte acústica a una línea de transmisión definida por los campos que actúan en las ecuaciones constitutivas.

Sin embargo, esta línea no está del todo completa, ya que hay que incluir el efecto de los electrodos, aislando los campos acústicos de los campos eléctricos. El término que relaciona la variación espacial de A·v con el desplazamiento D puede ser acoplado a través de un transformador ideal N:1, como se muestra en la figura

Acoplamiento de la parte acústica y la eléctrica mediante un transformador N:1

Acoplamiento de la parte acústica y la eléctrica mediante un transformador N:1

y la relación de N se puede calcular por

trafo_ratio

Vamos ahora a estudiar la corriente I. Esta corriente se produce cuando se aplica una tensión E⋅δz en los electrodos del piezoeléctrico. Al aplicar esa tensión, generamos una polarización P, debido al carácter dieléctrico del material. Del mismo modo, sabemos que la corriente I es una variación de la carga Q, y que sólo se producía variación de la carga superficial σ del piezoeléctrico, y que ésta es debida a la polarización P, no variando la carga volumétrica, por lo que

current_in

y como a la polarización P se opone el desplazamiento eléctrico D para mantener el campo electrico E, obtenemos que

current_desplaza

Estudiamos ahora el potencial E⋅δz aplicado en los electrodos. Usando las ecuaciones constitutivas, obtenemos que el potencial es

in_pote

Derivando esta expresión con respecto al tiempo, obtenemos

in_pote3

Estudiemos ahora los términos en δV1 y  δV2. En el término en δV1 podemos obtener la expresión

current_cap

y es la corriente que fluye a través de un condensador de valor CO , en paralelo con la tensión aplicada. Mientras, el término en δV2 se puede relacionar con la corriente que circula en la parte acústica a través de transformador, siendo Iprim la corriente que circula por el devanado primario del transformador. Usando las relaciones del transformador, podemos encontrar la relación de dicha corriente con esta tensión a través de

current_prim

Tenemos que hacer la consideración de que el peso de la tensión δV1>>δV2 , ya que al calcular la relación de transformación en el transformador hemos supuesto que es E⋅δz=δV, por lo que δV1δVδV20. De este modo, la corriente del primario es una corriente que circula a través de una capacidad negativa de valor CO.

Usando estos parámetros, deducidos de las ecuaciones constitutivas, es posible hacer un modelo completo del circuito equivalente de un piezoeléctrico, que se puede ver en la figura siguiente

mason_model

Circuito equivalente de Mason de un piezoeléctrico

CONDICIONES DE CONTORNO

Cualquier medio material está dentro de otros medios materiales (aire, agua, substratos semiconductores, metales, etc), y todos los medios materiales propagan ondas acústicas. Por tanto, así como en electromagnetismo definimos una impedancia de carga eléctrica sobre la que se transfiere la energía entregada desde el generador eléctrico, podemos definir una resistencia de carga acústica, que es donde se transfiere la energía acústica de la deformación. Esta resistencia de carga acústica está relacionada con la impedancia acústica del medio, y se transforma en una resistencia eléctrica a través de la expresión

acustic_resis

Por ejemplo, el aire tiene una impedancia acústica de 471 Rayls, así que para un piezoeléctrico AlN, con una superficie de 10.000μm2, si ambas superficies estuviesen en contacto con el aire, las impedancias de carga a conectar en los puertos A·T1 y A·T2 serían iguales y valdrían 4,71μΩ, lo que vendría a ser como colocar un cortocircuito en ambos puertos.

En el caso de que uno de los medios fuese aire y el otro, silicio, el silicio tiene una impedancia acústica de 8,35·105 Rayls, en el puerto del silicio habría que poner 8,35mΩ.

Hay que notar que, aunque la impedancia obtenida sea baja. no es estrictamente un cortocircuito. De hecho, al aire, que es el que más baja impedancia presenta, es al que consideramos un cortocircuito, mientras que el resto de materiales presentan impedancias acústicas más elevadas.

También es posible que tengamos un material compuesto de varios espesores de materiales, siendo uno de ellos piezoeléctrico, mientras que los demás son conductores o aislantes. Cuando esto ocurre, cada material puede ser representado por una línea de transmisión de igual modo que el piezoeléctrico. Por ejemplo, si el piezoeléctrico está encapsulado entre dos materiales diferentes, como el wolframio (W) y el molibdeno (Mo), y el wolframio está en contacto con el aire y el molibdeno con silicio, habría que añadir sendas líneas de transmisión entre las cargas y el piezoeléctrico, como se muestra en la figura siguiente

piezo_total

 

NO LINEALIDAD EN LOS MATERIALES: EL MODELO NO LINEAL DE MASON

En las condiciones de trabajo habituales de los piezoeléctricos, el funcionamiento debe de ser lineal. Sin embargo, los materiales presentan limitaciones que hay que tener en cuenta a la hora de trabajar con tensiones elevadas. Estas no linealidades introducen frecuencias espurias que reducen la calidad de la señal. Si estamos usando estos materiales en filtros de recepción, las no linealidades pueden representar un problema cuando una señal interferente de valor elevado atraviesa el material.

El piezoeléctrico es un resonador de muy alto factor de calidad. Traducido a parámetros discretos, se comporta como el circuito de la figura

Resonador equivalente de un piezoeléctrico

Resonador equivalente de un piezoeléctrico

La impedancia del resonador se puede representar en función de la frecuencia, obteniendo una gráfica similar a

impedancia

Impedancia del resonador en función de la frecuencia

El modelo, para bajos potenciales eléctricos, responderá correctamente de forma lineal. Sin embargo, a medida que aumentamos el valor del potencial eléctrico aplicado, empiezan a aparecer condiciones no lineales que limitarán su uso. Estas condiciones no lineales afectan, sobre todo, a las distorsiones de 2º y 3er orden, que son las que pueden afectar en mayor medida sobre la señal útil.

Una forma muy efectiva de simular no linealidades en circuitos eléctricos es el uso de las series de Volterra, una variante de los polinomios de Taylor en el que la respuesta depende en todo momento de los valores de los parámetros de entrada, incluyendo efectos de “memoria”, mediante acumulación de energía, de las capacidades e inducciones.

Como en las series de Taylor, las series de Volterra pueden ser truncadas en aquellos ordenes que sean superiores al que se considera dominante, por lo que nuestro modelo, considerando dominantes sobre todo el 2º y 3er orden de distorsión, puede truncarse a partir del 4º orden .

La distorsión afectará tanto al campo eléctrico como a la tensión mecánica. Las ecuaciones constitutivas, incluyendo estos efectos no lineales, quedarán descritas como

constitu_nolineal

siendo ΔT un polinomio de 3er orden que se expresa mediante la suma de 2 términos ΔT2T3, donde el subíndice indica que el polinomio es de 2º o de 3er orden. El caso de ΔD es similar.

Los polinomios que ΔT2, ΔT3, ΔD2 yΔD3 se muestran a continuación:

polinom

y además, se sigue teniendo que cumplir la ecuación de Lipmann para la conservación de la energía.

Las series que definen el modelo no lineal se pueden introducir en el modelo lineal de Mason a través de fuentes de tensión dependientes, tanto en la zona eléctrica como en la zona acústica. A dichas fuentes las denominamos VC y TC y están situadas, dentro del modelo, en la entrada eléctrica (caso de VC) y en línea común de la corriente de secundario (caso de  TC), tal y como se muestra en la figura.

Modelo de Mason con las fuentes no lineales

Modelo de Mason con las fuentes no lineales

Estas fuentes se derivan de las ecuaciones constitutivas del mismo modo que hemos derivado el modelo lineal, y se obtienen sus expresiones, que son

ecuaciones_nolin

Con estas expresiones en el modelo de Mason, tenemos un modelo equivalente no lineal de un material piezoeléctrico, que incluye los efectos de 2º y 3er orden de distorsión, y podemos estudiar el comportamiento de un componente fabricado con este tipo de materiales en presencia de señales interferentes.

CONCLUSIÓN

En esta entrada hemos querido presentar un modelo eléctrico útil para representar un material piezoeléctrico, extraído a partir de las ecuaciones constitutivas. Esto nos ha permitido llegar al modelo que W.P. Mason obtuvo en los años 40, y entender cómo realizó la extracción de los parámetros del modelo.

No sólo hemos obtenido el modelo de Mason, sino que hemos parametrizado un modelo que pueda representar las variaciones no lineales a partir de las series de Volterra, que nos permitirán realizar un modelo no lineal que incluya los efectos de 2º y 3er orden de distorsión, y poder predecir la respuesta de un dispositivo de estas características en condiciones de señales interferentes.

En la próxima entrada vamos a proceder a estudiar el modelo en un simulador, mostrando cómo se realiza un modelo equivalente del piezoeléctrico incluyendo los parámetros no lineales, describiremos un método de medida para extraer los parámetros no lineales y mostraremos los resultados obtenidos mediante simulación.

REFERENCIAS

  1. W.P. Mason, Electromechanical Transducers and Wave Filters”, Princeton NJ, Van Nostrand, 1948
  2. J. F. Rosenbaum, “Bulk Acoustic Wave Theory and Devices”, Artech House, Boston, 1988.
  3. M. Redwood, “Transient performance of a piezoelectric transducer”, J. Acoust. Soc. Amer., vol. 33, no. 4, pp. 527-536, April 1961.
  4. R. Krimholtz, D.A. Leedom, G.L. Mathaei, “New Equivalent Circuit for Elementary Piezoelectric Transducers”, Electron. Lett. 6, pp. 398-399, June 1970.
  5. Y. Cho and J. Wakita, “Nonlinear equivalent circuits of acoustic devices”, Proc. IEEE Ultrason. Symp., Nov. 1993, vol. 2, pp. 867–872.
  6. C. Collado, E. Rocas, J. Mateu, A. Padilla, and J. M. O’Callaghan, “Nonlinear Distributed Model for BAW Resonators”, IEEE Trans. On Microwave Theory and Techniques, vol. 57, no. 12, pp. 3019-3029, Dec. 2009.
  7. E. Rocas, C. Collado, J.C. Booth, E. Iborra, and R. Aigner, “Unified Model for Bulk Acoustic Wave Resonators’ Nonlinear Effects”, Proc. 2009 IEEE Ultrasonics Symposium, pp. 880-884, Sept. 2009.
  8. M. Ueda, M Iwaki, T. Nishihara, Y. Satoh, and K Hashimoto, “Investigation on Nonlinear Distortion of Acoustic Devices for Radio-Freqquency Applications and Its Suppression”, Proc. 2009 IEEE Ultrasonics Symposium, pp. 876-879, Sept. 2009.
  9. M. Ueda, M Iwaki, T. Nishihara, Y. Satoh, and K Hashimoto, “A Circuit Model for Nonlinear Simulation of Radio-Frequency Filters Employing Bulk Acoustic Wave Resonators”, IEEE Trans. On Ultrasonics, Ferroelectrics, and Frequency control, vol. 55, 2008, pp. 849-856.
  10. D. S. Shim and D. Feld, “A General Nonlinear Mason Model of Arbitrary Nonlinearities in a Piezoelectric Film”, Proc. 2010 IEEE Ultrasonics Symposium, pp. 295-300, Oct. 2010.
  11. D. Feld, “One-Parameter Nonlinear Mason Model for Predicting 2nd & 3rd Order Nonlinearities in BAW Devices”, Proc. 2009 IEEE Ultrasonics Symposium, pp. 1082-1087, Sept. 2009.

Estudio avanzado de los radioenlaces

Hablabamos en diciembre del año pasado del cálculo de radioenlaces. Habíamos puesto como modelos iniciales para dicho cálculo el del espacio libre (representado por la fórmula de Friis) y los modelos de Okumura y Okumura-Hata, que son modelos extrapolados de cálculos estadísticos realizados a través de mediciones reales en entornos urbanos. Sin embargo, estos modelos no incluyen la orografía del terreno, la obstrucción debida a los propios enlaces o fenómenos como la difracción. Estos fenómenos físicos son bastante complejos de analizar, pero cualquier radioenlace que los incluya tendrá más posibilidades de éxito que los que se realicen con el simple modelo del espacio libre o el de Okumura-Hata. En esta entrada estudiamos el modelo de Longley-Rice, basado en el modelo de tierra irregular, que data de los años 60 y que fue desarrollado debido a la que los EE.UU. estaban realizando un plan de asignación de frecuencias para la difusión de TV (Broadcast).

EL MODELO DE LONGLEY-RICE

El modelo de Longley-Rice es un modelo de tierra irregular, conocido por las siglas ITM. Es un modelo de estudio de cobertura de radioenlaces, inicialmente pensado para la cobertura broadcast de TV, dentro del plan de asignación de frecuencias del espectro radioeléctrico.

El modelo se basa en la aplicación de los fenómenos físicos ya conocidos: atenuación en el espacio libre de Friis, elipsoides de Fresnel, difracción, trayectorias multicamino, etc., a los que se añade el efecto de la irregularidad de la Tierra. A partir de ese modelo, se realizan análisis estadísticos de cobertura que se plasman en algoritmos que permitan una predicción lo más atinada posible de esa cobertura.

Imagen de una Tierra con orografía irregular

La Tierra no es regular. Si añadimos al fenómeno de la curvatura terrestre el de la orografía, la propagación electromagnética se encuentra con muchos obstáculos. A frecuencias por debajo de los 30MHz, la emisión radiada suele ser bastante eficaz (las célebres emisoras de Onda Media y Onda Corta), llegando a muchas partes del planeta gracias a la reflexión en la ionosfera, permitiendo que lleguen a otras partes del planeta e incluso dar una vuelta completa. Son las bandas de transmisión de radio y de los radioaficionados, y por lo general es el propio planeta el repetidor.

En función de la banda, las frecuencias radiadas se verán favorecidas en la radioemisión, siendo la banda más baja (Onda Media) una banda nocturna (se ve más favorecida en alcance por la noche), y pasando a diurna hasta que los fenómenos de reflexión debidos a la ionosfera desaparecen y se vuelven caprichosos.

El modelo ITM cubre la banda de 20MHz÷20GHz y hasta 2000km, aunque se está extendiendo ya, debido a la necesidad de realizar radioenlaces a más alta frecuencia, hasta los 40GHz.

El modelo, que incluye los fenómenos electromagnéticos ya conocidos y los combina con una cartografía terrestre donde se incluyen los fenómenos urbanos, de bosque, orográficos y de obstáculos, permite, mediante un análisis estadístico, conocer las posibilidades de una cobertura realizada por un repetidor, estimando cuáles son los valores medios que se pueden llegar a tener en un receptor fijo y en uno móvil.

No obstante, el modelo, que nació en 1968, está en continua evolución, puesto que algunos resultados muestran diferencias con las medidas realizadas, por lo que se hace necesaria una combinación de diversos modelos para tener una estimación más realista.

SOFTWARE BASADO EN LONGLEY-RICE

Existen varias aplicaciones basadas en el modelo de Longley-Rice. Una de ellas, libre y muy sencilla de usar, está realizada por el ingeniero de RF canadiense Roger Coudé, denominada Radio Mobile. Con ella es posible cargar un mapa de una cierta zona, abarcando un determinado territorio, y establecer una red de radioenlaces en la que podamos estudiar la cobertura con cierta seguridad.

El software, de tipo freeware, establece la definición de los sistemas, del tipo de red, de la orografía del terreno, del entorno climático, del tipo de orografía del terreno. También permite la definición de las potencias emitidas por el transmisor y las recibidas por el receptor, así como las ganancias de antena y el tipo de antena utilizado.

Análisis de un enlace de radio punto a punto.

El software permite el análisis punto a punto con la transcripción de la orografía del terreno, representando, además, las elipsoides de Fresnel, y mostrando las contribuciones a las pérdidas en el espacio libre de las obstrucciones, los entornos urbanos y las zonas boscosas.

También es posible analizar redes punto-multipunto, topologías de tipo estrella o de tipo cluster.

Una de las cosas más interesantes del programa es la posibilidad de realizar sobre el mapa diagramas de cobertura, limitando los parámetros óptimos de la red y caracterizándola en función de la posición sobre el terreno, así como de obtener localizaciones favorecidas para obtener la mejor ubicación.

No obstante, tenemos que recordar que se trata de un simulador, y como todos los simuladores, tiene la eficiencia de la cantidad de datos que proporcionemos, y muchos de ellos no son de fácil modelización. Para ello, voy a estudiar un ejemplo que realicé hace unos años con un radioenlace que tuve que colocar en un camping de la Bretaña francesa, en Quimper.

EL PROBLEMA DEL CAMPING DE QUIMPER

En el año 2008 tuve que ir a instalar un radioenlace en el camping Port de Plaisance, en Quimper. Se trataba de una instalación destinada a emitir la TNT (Télévision Numérique Terrestre) dentro del entorno del camping, ya que la señal del repetidor llegaba con una señal ya muy baja a algunos de los bungalows del camping.

Parecía que se trataba de una instalación sencilla: el camping no tenía más de 700m de longitud, por lo que un repetidor de 500mW parecía más que suficiente para cubrir el terreno. El problema partía de la normativa de TNT en Francia exigía que cualquier repetidor tenía que ponerse en modo SFN (Single Frequency Network), por lo que había que emitir en el mismo canal que se recibía. No era posible realizar, pues, cambio de canalización.

Esta situación limitaba mucho la potencia de nuestro repetidor, ya que al emitir en la misma frecuencia y carecer de un sistema de cancelación de ecos (realimentación producida al acoplarse la frecuencia emitida en la antena de recepción del repetidor), había que disminuir el nivel de salida del repetidor para evitar oscilaciones.

El camping tenía una distribución que podemos ver en el siguiente mapa:

benodet

Camping “Port de Plaisance”

Por supuesto, el objetivo era cubrir todos los bungalows, y para ello utilizamos el modelo de espacio libre. La ubicación tanto de la antena de recepción como la de transmisión fueron definidas por la dirección del camping, así como la ubicación de los equipos, que serían colocados en unas dependencias a las que no podían acceder los clientes.

Atendiendo al modelo de cobertura del espacio libre, teníamos entre 70 y 80dB de pérdidas en las frecuencias de UHF en las que íbamos a emitir. Por tanto, el problema de la potencia quedaba resuelto, ya que con 50mW de emisión llegábamos perfectamente a cualquier punto del camping con una antena omnidireccional, con una ganancia del orden de 9dBi. De hecho, en el peor punto llegábamos con 57dBμV, 10dB más que los que se recomiendan como límite inferior para recibir una señal de TV COFDM correcta. Así que con la alegría de que íbamos a poner un repetidor en Francia, nos acercamos a Quimper a finales del invierno de 2008, a hacer la instalación y tomar las medidas.

El primer inconveniente con el que nos encontramos fue, precisamente, el problema de la realimentación. Ya sabíamos que podría ocurrir, pero las estimaciones calculadas y las reales nos mostraron que no podíamos sacar más de 75mW en el mejor de los casos, y con este nivel en algunas ocasiones el canal concreto se ponía a oscilar. El valor de 50mW era también algo optimista, aunque era un valor, en principio, seguro.

Otra de las cosas que no introdujimos en los cálculos era el gran número de ostáculos a los que se enfrentaba nuestro repetidor. Como buen camping situado en una zona tan húmeda como la Bretaña francesa, el terreno tenía abundante vegetación y arbolado, y en muchas ocasiones los árboles se topaban con el camino radioeléctrico como si fuesen un muro. No obstante, logramos colocar el repetidor y de las mediciones que hicimos, vimos que teníamos nivel de señal óptimo, aunque 6 o 7 dB inferior al que el modelo del espacio libre nos predecía.

Al cabo de dos meses, desde la dirección del camping nos telefonearon indicando que en muchos sitios del camping no se recibía la señal de TNT, y que los clientes se quejaban porque era un servicio ofertado por el camping y querían dicho servicio. Así que con los equipos en la mano, volvimos para estudiar “in situ” lo que ocurría.

A nuestra llegada, pudimos comprobar con estupor que las arboledas sin hojas de marzo se habían convertido en un frondoso bosque. Teniendo a mano las medidas realizadas, volvimos a hacer la comparativa y donde antes teníamos del orden de 50dBμV, ahora teníamos menos de 45dBμV, por lo que en algunos sitios la señal estaba pixelando continuamente o entraba a negro, dependiendo de la calidad del receptor. Un desastre, vamos.

Así que tuvimos que recurrir a reajustar el repetidor, teniendo en cuenta que no podíamos dar más de 75mW, si no queríamos que el canal oscilase. La dirección del camping tampoco permitía el cambio de canal, por lo que teníamos pocas opciones. Así que la solución fue buscar un punto de potencia de salida que permitiese la cobertura justa, e intentar buscar los lugares donde esta cobertura era mala, para intentar dar con una solución, que consistía en la instalación de un microrrepetidor de menos potencia.

Por tanto, ahí descubrí que el modelo del espacio libre era eso: del espacio libre. No era válido para realizar una estimación de cobertura para una instalación sobre un determinado terreno.

¿Y SI HUBIESE TENIDO EL SIMULADOR RADIO MOBILE?

Hoy, después de 6 años y medio de aquella instalación, he hecho el análisis de la misma a través del software Radio Mobile y me he encontrado con que aquellos datos que tomé en su momento eran correctos, y que mi hipótesis inicial, presentada en el informe de la instalación, era acertada. Al justificar que la existencia de obstrucciones en el camping no me permitían una cobertura total, las conclusiones eran discutidas y tomadas como poco rigurosas.

De hecho, al tomar el peor punto de la red, que llamaremos Receptor 2, pude comprobar que en condiciones de obstrucción la señal, que en espacio libre estaba sobrada, estaba atenuada en 12dB más, lo que hacía que la señal cayese por debajo de la señal que habíamos puesto como límite, e incluso por debajo de la señal óptima.

Transmisión simulada en el punto peor del camping Port de Plaisance

Entonces, decidí hacer una simulación de la cobertura desde el repetidor, para ver cómo se distribuía la señal, y obtuve el siguiente plano de cobertura

Mapa de cobertura del camping “Port de Plaisance”. En rojo, fuera de cobertura. En amarillo, cobertura débil. En verde, buena cobertura.

donde pude comprobar, a partir del mapa de terreno que usa el programa, que había zonas internas de mala cobertura y que las zonas donde tenía una cobertura débil (que dependiendo de las condiciones climatológicas podía ser incluso mala), eran superiores a las que en principio me mostraba el modelo del espacio libre. Y que la zona en la que el modelo de espacio libre nos daba como peor, pero dentro de características, se ajustaba a los valores obtenidos en las medidas.

CONCLUSIONES

Si hubiese tenido este software de simulación en el momento de estudiar la instalación del repetidor en “Port de Plaisance”, para nada hubiese acudido a montar el repetidor si no tengo la cobertura garantizada. Incluso con el máximo nivel de 500mW la cobertura no estaba garantizada, con algunas zonas de sombra que no podríamos cubrir.

cover2

Cobertura con el máximo nivel de 500mW.

El programa me ha demostrado, pues, mucha utilidad para el cálculo de coberturas. Al menos, se obtienen cosas bastante más realistas que el optimismo inicial del modelo del espacio libre.

REFERENCIAS

  1. P.L. Rice, “Transmission loss predictions for tropospheric communication circuits”, Volume I & II, National Bureau of Standards, Tech. Note 101
  2. A. G. Longley and P. L. Rice, “Prediction of tropospheric radio transmission loss over irregular terrain. A computer method-1968”, ESSA Tech. Rep. ERL 79-ITS 67, U.S. Government Printing Office, Washington, DC, July 1968