SHARENG Divulgación

Inicio » simulación

Category Archives: simulación

Diseño de un amplificador de audio en Emisor Común con Qucs

Un blog interesante.

TRESCIENTOS BAUDIOS

El amplificador que vamos a diseñar en esta ocasión, ya fue utilizado para enseñar como funcionaba el análisis en AC de un circuito amplificador o filtro. Este análisis sirve para obtener la respuesta en frecuencia de un dispositivo en concreto.

En esta ocasión voy a utilizar el simulador Qucs, en concreto la versión 0.0.18-2. Esta versión la tenéis que descargar de la página de los desarrolladores. La versión que os comente en un artículo anterior, me ha dado problemas y he tenido que volver a instalar la anterior.

Ver la entrada original 765 palabras más

Simulando reguladores DC-DC conmutados

Los reguladores son dispositivos que convierten tensiones de DC a DC. Pueden ser de dos tipos: lineales (disipativos) y conmutados. Los primeros toman la tensión de entrada y la reducen a una tensión deseada, mientras que los segundos convierten la tensión de entrada en otra usando técnicas de conmutación, pudiendo ser la tensión de salida inferior o superior a la de entrada. Si la tensión de salida es inferior, se llaman reductores (“buck”), y si es superior, elevadores (“boost”). A diferencia de los reguladores lineales, con estos dispositivos se pueden obtener eficiencias en la transferencia de energía superiores al 80%, reduciendo la disipación en la regulación. En esta entrada vamos a proceder analizar un pequeño circuito elevador, desde una batería de 3V a 12V, y vamos a usar dos simuladores de circuitos para comprobar los resultados: LTSpice de Linear Technology Corp. y Tina-TI de Texas Instruments, ambos basados en los algoritmos SPICE.

En los circuitos electrónicos es necesario siempre alimentar con una fuente de alimentación DC. En la mayoría de las ocasiones, las tensiones de alimentación son superiores a las necesarias para alimentar las partes activas, por lo que se suelen usar reguladores lineales para conseguir la tensión adecuada. Sin embargo, hay ocasiones en las que es necesario obtener una tensión superior a la que disponemos, para alimentar el circuito.

Supongamos que tenemos un circuito que tenemos que alimentar a 12V, cuyo requisito es alimentarlo desde una batería de 3,2V. Al necesitar elevar la tensión, no se puede usar un regulador lineal, ya que la tensión de salida de éste siempre es inferior a la de la entrada. Por tanto, es necesario usar un “boost” para elevar la tensión hasta 12V.

El circuito que vamos a utilizar se puede ver en el esquema siguiente

Conversor DC-DC de 3,2V a 12V (esquema en LTSpice)

En este diseño, la conmutación se realiza a través del bipolar Q1 (BD139), gobernado por un temporizador NE555, que genera los pulsos para que el transistor conduzca. Cada vez que éste entra en conducción, la bobina L1 se carga a hasta una corriente máxima Im. Cuando el transistor deja de conducir, la corriente máxima Im a la que se ha cargado la bobina es descargada a través del diodo D1 a la carga representada por R5. El funcionamiento es en modo continuo, por tanto la corriente de la bobina nunca llega a ser nula en el ciclo de conmutación.

ANÁLISIS DEL CONVERTIDOR CON LTSpice

Uno de los simuladores de circuitos más populares es SPICE, un software basado en la resolución matricial por nudos de circuitos eléctricos y que incluye varios algoritmos de cálculo en función de la respuesta que se quiera estudiar. Los análisis típicos de SPICE son el análisis de continua DC, el análisis de alterna AC y el análisis transitorio TRAN. Mientras que con un regulador lineal, basta con realizar un análisis DC y comprobar la tensión de salida, en un regulador conmutado hay que hacer un análisis transitorio para obtener la respuesta del circuito.
LTSpice es una versión de SPICE realizada por Linear Technology, de carácter libre y con un algoritmo de cálculo transitorio optimizado para el estudio de los reguladores, ya que el principal mercado del fabricante americano son los componentes de gestión de potencia. Por tanto, incluye una gran librería de estos componentes y en su página se pueden observar varios tutoriales para analizar circuitos. El NE555 forma parte de sus librerías por lo que no hay que crear uno. Sin embargo, los modelos del transistor y del diodo deben incluirse usando la tarjeta .MODEL. Ambos semiconductores son de propósito general, pero vamos a poner aquí los modelos para poder incluirlos en el circuito.

Tarjetas .MODEL para el transistor y el diodo

Una vez incluidos ambos modelos, se realiza un análisis transitorio de 30ms. Para ver el funcionamiento, representaremos primero la caída de tensión en R5 en todo el rango del tiempo. Luego, iremos representando cada uno de los parámetros importantes del convertidor.

Para todo el tiempo de simulación, la tensión en R5 es

Tensión en la resistencia R5 en todo el rango de simulación

Podemos observar que hay un impulso amortiguado en el arranque, debido a la respuesta paso bajo que realiza la bobina L1 con el condensador C4, que es el que realizará el filtrado de las componentes de alterna. La amortiguación es prácticamente inmediata, cayendo 7V en 2,85ms. En dos oscilaciones más (a 8,55ms del arranque), la tensión se comienza a estabilizar hasta que se mantiene constante.

Vamos a ver ahora qué ciclo de trabajo se utiliza para obtener esta respuesta. El ciclo lo proporciona el NE555, por lo que estudiamos la onda a la salida de este integrado. Esta es

Señal de control a la salida del NE555

 donde se puede ver que la señal de control tiene una frecuencia de 47kHz y un ciclo de trabajo del 78%. Con esos valores, analizamos primero los resultados obtenidos en régimen permanente, que son los siguientes

Tensiones y corrientes en el convertidor

donde se miden las corrientes en la bobina L1 y la carga R5, así como las tensiones en el colector de Q1 y en la carga R5. De estos resultados se obtiene que la tensión de salida del conversor es 13,3V, con un rizado de ±60mV. La corriente en la carga es del orden de 60,5mA, lo que implica una potencia entregada a la carga de 805mW. La corriente media que se pide a la batería es la que circula por la bobina L1 y es del orden de 275mA, lo que significa que se pide a la batería una potencia de 880mW. Teniendo en cuenta la potencia entregada a la carga, el rendimiento del “boost” es η=805/880=0,92=92%, una eficiencia muy buena para un conversor DC-DC.

El transistor Q1 está sobredimensionado, se podría colocar un transistor de menos potencia para lograr la misma eficiencia (por ejemplo un BC337) y consumo. El circuito está pensado para ser usado con una batería de 3,2V y 2000mAh, por lo que a máximo consumo la batería durará 7h. Es un convertidor idóneo si no se quiere acudir a uno comercial y se quiere montar con componentes fáciles de localizar en una tienda de componentes electrónicos, ya que el NE555 y el BC337 son de uso muy común, así como los componentes pasivos.

Una de las ventajas de LTSpice sobre otros simuladores similares es que se puede ver la simulación en tiempo real, ya que actualiza los datos representados en las gráficas según va obteniendo los resultados, pudiendo detener o pausar la simulación en cualquier momento.

ANÁLISIS DEL CONVERTIDOR CON Tina-TI

Como hemos dicho, el simulador LTSpice es una versión de SPICE desarrollada por Linear Tech. para la simulación, preferentemente, de los componentes que comercializa este fabricante. Otros fabricantes, como Texas Instruments, también ponen a disposición de los diseñadores un software de simulación similar, llamado Tina-TI, que se puede encontrar en su página web y que es de distribución libre. Como LTSpice, Tina-TI incluye las librerías de componentes comercializados por Texas Inst., aparte de las librerías convencionales de componentes de propósito general, por lo que es un simulador dispuesto para el uso una vez descargado en instalado.

En este caso, nuestro diseño toma la siguiente forma

Esquema del convertidor en Tina-TI

En este caso, para estudiar las tensiones y corrientes ponemos puntos de test de corriente en serie con la bobina y la carga, así como de tensión en paralelo con el transistor y la carga. En este caso no es necesario incluir la tarjeta .MODEL ya que tanto el transistor como el diodo tienen incluidos sus modelos en la librería. La simulación, como en LTSpice, se puede visualizar en tiempo real, pudiendo también detenerla o pausarla.

Los resultados obtenidos con Tina-TI son los siguientes

Resultados obtenidos con Tina-TI

donde se puede observar una muy ligera variación en los valores de tensión y corriente, una desviación del orden de un 1,2% que es un valor muy aceptable. Por tanto, Tina-TI también es un simulador adecuado para analizar este tipo de circuitos.

CONCLUSIONES

El objetivo de la entrada era no sólo mostrar un diseño sencillo de “boost” con componentes de propósito general, sino además comparar dos simuladores de código libre y que son bastante potentes, puestos a disposición del ingeniero junto con unas librerías y actualizaciones periódicas de las mismas que permiten aumentar la capacidad del simulador. Para mi gusto, llevo trabajando más tiempo con LTSpice y es más intuitivo y de fácil manejo, aparte de que permite una jerarquía esquemática para los subcircuitos más sencilla. Su manual de ayuda también es bastante claro. Tina-TI no ofrece la posibilidad de jerarquía en el esquemático, pero tiene una librería de más de 20.000 componentes, además de macros ya realizadas para circuitos integrados del fabricante. Incluye además la posibilidad de trazar los resultados con instrumentos como el osciloscopio, multímetro o analizador de señal.

En cuanto a las presentaciones, LTSpice es más cómodo a la hora de representar los resultados, ya que basta con poner el puntero sobre el punto a testar: si es un nodo, se mide tensión, y si es un componente, corriente, mientras que Tina-TI debe de incluir componentes de test. De este modo, el esquemático de LTSpice queda limpio de componentes de test, aunque en éste también se pueden incluir. En ambos, sin embargo, se sigue echando de menos la posibilidad de realizar cálculos con los resultados obtenidos, como ocurre con otros simuladores más potentes. Sin embargo, son herramientas muy útiles para analizar sistemas electrónicos, y por tanto, recomendables para el diseñador.

REFERENCIAS

  1. Martínez García, Salvador; Gualda Gil, J. Andrés., “Electrónica de Potencia: Componentes, topologías y equipos”, Madrid : Thomson Editores Spain, 2006. ISBN 978-84-9732-397-0
  2. Getting started with LTSpice
  3. Soluciones para LTSpice
  4. Getting started with Tina-TI
  5. Documentos técnicos y blogs para Tina-TI

(Las referencias 2 a 5 contienen enlace para acceder a las páginas de Linear Technology y Texas Instruments)

Ajustando filtros mediante el método de Dishal

filtroEn Telecomunicaciones es usual tener que usar filtros para poder eliminar frecuencias indeseadas. Estos filtros suelen ser de bandas muy estrechas y se suelen utilizar técnicas de líneas acopladas, por lo que en la mayor parte de los diseños se debe recurrir a la simulación electromagnética para verificar el diseño. La simulación electromagnética, aunque es una potente herramienta, suele ser lenta si se desea optimizar mediante algoritmos convencionales. Aunque estos algoritmos están incluidos en la mayor parte de los simuladores electromagnéticos, ya sea en 2D o en 3D, si la respuesta del filtro está muy alejada de la deseada, la optimización suele ser muy lenta, por lo que se requieren otros métodos que permitan ajustar previamente antes de realizar una optimización final. Uno de los métodos es el de Dishal, en el que se puede sintonizar un filtro de varias secciones a base de sintonizar cada una de ellas. En esta entrada, sintonizaremos un filtro microstrip de tipo HAIRPIN, de resonadores λ/2 acoplados, usando un simulador electromagnético como HPMomentum.

Los filtros son los dispositivos más comunes que se usan en Telecomunicaciones. Eliminan las frecuencias interferentes y el ruido, pudiendo procesar la señal recibida o transmitida de una forma más eficiente. Tienen bastante literatura para su diseño, y existen muchas combinaciones para obtener su respuesta. Sin embargo, es uno de los dispositivos en los que es más difícil obtener un óptimo resultado. Su sintonía física requiere habilidad y entrenamiento, y su sintonía en simulación paciencia y tiempo. Sin embargo, existen técnicas que permiten la optimización de un filtro a base de usar metodologías de ajuste que permita acercarse a los parámetros ideales del filtros. Una de metodología que permite sintonizar un filtro de forma sencilla es el método de Dishal y es el que vamos a usar para sintonizar un filtro paso banda HAIRPIN para la banda de subida de LTE-UHF.

Esta metodología permite realizar el ajuste de un filtro paso banda acoplado sintonizando tanto de los factores de calidad Qi y Qo que necesita el filtro para ser cargado, como de los factores de acoplamiento Mi,i+1 que acoplarán las diferentes etapas, de forma independiente. Estos parámetros son calculados a través de los parámetros del filtro prototipo, que se pueden obtener ya sea a través de las tablas presentes en cualquier libro de diseño de filtros como en programas de cálculo como MatLab. Las expresiones para calcular los parámetros fundamentales de un filtro paso banda acoplado son

formulas

donde fh y fl son las frecuencias de corte de la banda pasante, f0 es la frecuencia central y FBW el ancho de banda fraccional. Los valores g0..gn son los coeficientes del filtro prototipo normalizado. Con estos valores obtendremos los parámetros de acoplamiento de nuestro filtro.

FILTRO PASO BANDA HAIRPIN DE 5 SECCIONES

Vamos a desarrollar un filtro paso banda en tecnología microstrip, usando una configuración HAIRPIN de resonadores λ/2 acoplados. En este filtro, la línea resonante es una línea λ/2, que se acopla al siguiente resonador mediante la sección λ/4. O más concretamente, entre un 85 y un 95% de λ/4. Su denominación HAIRPIN es debida a que tiene forma física de peine. Nuestro filtro va a tener las siguientes características fundamentales:

  • Banda pasante : 791÷821MHz (banda de UHF para LTE de subida)
  • Número de secciones: 5
  • Tipo de filtro: Chebychev 1
  • Factor de rizado: 0,1dB
  • Impedancias de generador y carga: 50Ω

Con estos valores acudimos a las tablas para obtener los coeficientes g0..g6 del filtro prototipo y aplicando las expresiones anteriores obtenemos que

  • Qi=Qo=30,81
  • M12=M45=0,0297
  • M23=M34=0,0226

Con estos coeficientes se pueden calcular las impedancias Zoe y Zoo que definirán las líneas acopladas, así como la posición de los feeds de entrada y salida. En este último caso, esta posición se puede obtener a partir de

feed

Como soporte vamos a usar un substrato Rogers, el RO3006, que tiene una εr=6,15, usando un espesor de 0,76mm y 1oz de cobre (35μm). Con este substrato, el filtro obtenido es:

filter

y con estos valores, pasaremos a la simulación.

SIMULACIÓN DEL FILTRO PASO BANDA

Usando HPMomentum, el simulador electromagnético de ADS, vamos a poder simular la respuesta de este filtro, que se puede ver en la siguiente gráfica

Resultado de la simulación del filtro

Resultado de la simulación del filtro

que, la verdad sea dicha, no se nos parece ni por asomo a lo que pretendíamos realizar. El filtro está cerca de la frecuencia f0, tiene un ancho de banda de 30MHz, pero ni está centrado ni el rizado es, ni de lejos, 0,1dB. Por tanto, habrá que recurrir a una sintonía usando el método de Dishal y así llevar el filtro a la frecuencia deseada, con el acoplamiento deseado.

Buscando la posición del alimentador

Buscando la posición del alimentador

AJUSTANDO EL Q EXTERNO

En primer lugar vamos a ajustar los factores de calidad de los resonadores de generador y de carga, que tienen que ser de 30,81. Como ambos son iguales, la sintonía obtenida servirá para los dos. Para ajustar los Qi y Qo, tendremos que buscar la posición adecuada de la alimentación para que el valor sea el deseado.

Para calcular el Qext, se evalúa el coeficiente de reflexión del resonador y se obtiene su retardo de grupo. El factor de calidad será

qext Cuando hacemos la primera simulación y representamos Qext, obtenemos

qext2

donde se puede comprobar que ni el filtro está centrado ni su factor de calidad es el deseado. Para centrar el filtro, aumentamos la distancia entre las líneas en 1,1mm y recortamos las líneas resonantes en 0,34mm. De este modo, obtenemos

qext2_2

en el que ya están centradas las líneas, siendo el Qext de 37,28. Ahora aumentamos la distancia del feed al extremo de la pista en 0,54mm y obtenemos el Qext deseado.

qext2_3

Ya tenemos centrado el filtro y con el Qext requerido. Ahora tocaría ajustar los acoplamientos.

AJUSTE DE LOS ACOPLAMIENTOS

Para ajustar los acoplamientos, primero separamos el feed unos 0,2mm de la línea, y hacemos un espejo de la misma para que quede como sigue

coup_1

En este caso, para medir el acoplamiento usamos los picos que salen en la transmisión (S21), y aplicamos la expresión

coup_2

El resultado de la simulación, para el primer acoplo, es

coup_3

que como podemos comprobar está en el valor requerido.

En el caso del segundo acoplo

coup_4

que también está cerca de su valor requerido. Por tanto, con los cambios obtenidos, simulamos el filtro total y obtenemos

Filtro después de la primera sintonía

Filtro después de la primera sintonía

que ya se acerca al filtro deseado.

REITERANDO LA SINTONÍA

Si reiteramos sobre la sintonía, podremos llegar a mejorar el filtro hasta los valores que deseemos. Así, disminuyendo el Qext obtenemos

Disminución del Qext

Disminución del Qext

que supone ya una mejora importante. Jugando ahora con los acoplamientos, disminuyéndolos, llegamos a obtener

filt_3

Ajuste de los acoplamientos

que podemos dar por válido. Por tanto, el método de Dishal nos ha permitido, a partir de los parámetros calculados, ajustar el filtro hasta obtener las características deseadas.

CONCLUSIONES

Hemos analizado el método de Dishal como herramienta para el ajuste y sintonización de un filtro paso banda de 5 secciones, con óptimos resultados. La sencillez del método permite ajustar los principales parámetros de forma independiente, de manera que el ajuste final u optimización sean más sencillas, cosa de agradecer en simuladores electromagnéticos, que requieren de potencia de cálculo y tiempo de simulación. Vemos que el método, realizado paso a paso, nos permite ir ajustando las características hasta obtener el resultado deseado, por lo que podemos concluir que es un método muy útil en sintonización de filtros, tanto en discretos como en distribuidos, y que bien usado permite acercarse lo suficientemente al resultado final como para que la optimización electromagnética sea innecesaria.

REFERENCIAS

  1. Zverev, Anatol I., “Handbook of Filter Synthesys”, Hoboken, New Jersey : John Wiley & Sons Inc., 1967. ISBN 978-0-471-74942-4.

¿Fallan las encuestas electorales?

14665983216010Las recientes elecciones del día 26 vuelven a mostrar una discrepancia entre las encuestas electorales y los resultados finales. Tal ha sido la diferencia que, una vez más, se vuelve a dudar de la eficacia de las mismas como barómetro sociológico. Aprovechando las últimas entradas referentes a la Estadística, en ésta vamos a aclarar algunos términos que muestren la diferencia entre las encuestas y el muestreo final que corresponde a datos corroborados, como son las propias elecciones. Conocer estas diferencias es lo que ayudará a dar las encuestas el justo valor que se merece, sin convertirlas en algo que se tiene que cumplir necesariamente.

Como en otras ocasiones, las encuestas y los sondeos han mostrado una diferencia abismal entre las tendencias recogidas y los datos finales. Y una vez más, se vuelve a cuestionar al mensajero, porque se ha equivocado. Sin embargo, no hay tanto error, puesto que la metodología de la encuesta es correcta, sino más bien deseos de que esos resultados se reproduzcan de este modo.

Una encuesta es un estudio sociológico. Con ella se pretende tomar el pulso a una sociedad muy diversa y a la que le afectan muchas variables, muchas veces incontroladas. Se trata, pues, de indagar cómo respira un sistema caótico como es una sociedad en determinadas circunstancias y en presencia de determinados estímulos externos, a partir de la elaboración de una serie de preguntas concretas, cuya finalidad es intentar conocer lo que los humanos guardamos en mente sobre algo determinado. Sus resultados no están, por tanto, basados en datos objetivos fruto de una medición empírica, como lo es un resultado electoral, sino que son la tendencia que se puede obtener en un determinado momento de una situación a base de conocer esas respuestas. Si la metodología aplicada en la elaboración de las preguntas es correcta, los resultados también son, en ese momento correctos. Otra cosa es que se consideren esos resultados como definitivos, ya que definitivo sólo es el resultado de la medición objetiva. Una variación en las condiciones de contorno o en los estímulos externos puede variar una opinión determinada en un momento determinado.

¿Dónde vas este año de vacaciones?

Una pregunta que nos suelen hacer muy a menudo: ¿dónde vas a ir de vacaciones este año? La respuesta variará claramente en función de cuándo te hagan la pregunta. No es lo mismo que la hagan en marzo, a 5 meses de coger las vacaciones, que en junio. Depende de otras variables claras, como la situación económica, las ofertas de las agencias de viajes, si vas a ir sólo con tu familia o vas a compartir las vacaciones con otra familia amiga… Nuestra respuesta está supeditada al estímulo externo y no a un patrón determinado que marque qué es lo que voy a hacer en dos o tres meses, porque es posible que ni lo haya planificado ni lo vaya a planificar.

No obstante, en una campaña electoral, en la precampaña y sobre todo, si ha habido 6 meses de intentos infructuosos de formar un gobierno, los estímulos han sido continuos y a veces pueden provocar reacciones contrarias y efectos contraproducentes. Y el manejo de los sondeos debe de hacerse con prudencia espartana, puesto que pueden producirse descalabros como el del 26-J. Sin embargo, ha habido mucha proliferación de sondeos, casi uno cada día, cuya finalidad también puede haber sido marcar un paso o un objetivo, y ese uso indiscriminado se ha dado de bruces con el frío, duro y descarnado resultado de la medición objetiva. Aquí no cabe preguntarse si las encuestas están mal hechas, sino si ha habido intención de utilizar esa información de forma interesada y sesgada para forzar el resultado que le gustaría al que la maneja. Porque en realidad, eso es lo que ha ocurrido: se ha querido transformar anhelos en realidades.

La imposibilidad de predecir con exactitud los sucesos en un sistema caótico

Como la previsión atmosférica, la sociedad es un sistema caótico difícilmente predecible. Cuando se predice el tiempo, se acuden a modelos en los que se introducen las variables y se estudian tendencias. Se estudian también las evoluciones de días anteriores, se hacen análisis estadísticos aleatorios basados en Monte Carlo como el que he mostrado en las entradas técnicas, y con todos esos datos, se lanza una previsión. Pero, ojo, se trata de una previsión, que no una confirmación. Esa previsión se hace con un margen de probabilidad que dependerá también de las variables que afecten al sistema en ese momento y en su falta de aislamiento frente a otros estímulos. Así, que no llueva en Santander por el viento sur no es debido a que el viento sur sea una característica típica de Santander (lo que llamamos clima local), sino que detrás de la cordillera, con un clima local diferente, cambie una variable que por efecto de acción y reacción provoque precisamente la aparición del viento sur. La previsión es correcta siempre que se tenga en cuenta la probabilidad de que ocurra, dato objetivo basado en la fiabilidad del modelo que en muchas ocasiones ni se contempla ni se tiene en cuenta. Y tomamos la decisión de ir de vacaciones a Santander basándonos en esa previsión, sin analizar las probabilidades de que nuestras vacaciones terminen pasadas por agua porque los meteorólogos han dicho que va a hacer buen tiempo.

Pues no, los meteorólogos han previsto una situación atmosférica en función de los datos registrados. Eres tú el que quiere que haga buen tiempo, porque te interesa. Es el famoso sesgo de confirmación. Y claro, si tus vacaciones se van al traste, no hay nada mejor que echar la culpa al hombre del tiempo, como si éste no te hubiese dado todos los datos, probabilidad incluida, de qué es lo que podría ocurrir. Al que no le ha interesado el resto de los datos es a ti. El principal interesado en coger la parte bonita de la previsión porque entra en sus planes de vacaciones eres tú. El meteorólogo sólo ha hecho el trabajo de darte los datos, pero la decisión la tomas tú. Por eso, echar la culpa de una decisión malograda a la persona que te proporciona los datos, cuando no los has usado todos, sólo sirve de consuelo. Pero el hecho claro, el dato objetivo principal es que la decisión de ir a un sitio donde parecía que no iba a llover la has tomado tú.

¿Qué fiabilidad tienen las encuestas?

Como hemos visto en las entradas anteriores, la fiabilidad estadística en un sistema no determinista como el social depende, sobre todo, abaco blogdel tamaño de la muestra. A mayor muestra, mayor convergencia. Tanto en las mediciones objetivas como en los estudios sociológicos humanos. Hace unos años publiqué una entrada sobre los sistemas caóticos, recordando el experimento del triángulo claveteado y la canica. Este fue uno de los primeros experimentos que tuve que hacer en la asignatura de Física General, en mi época de estudiante, y debería ser obligatorio para todos los alumnos, como en Termodinámica y Mecánica Estadística fue obligatorio el de la Teoría Cinética de los Gases.

El experimento es muy sencillo: se trata de arrojar un número de canicas en un triángulo de madera que contiene filas de clavos colocadas como se describe en la figura. Al bajar la canica y pasar entre dos clavos, se encuentra con el siguiente, y el choque y el efecto de bajada hará que tome una dirección u otra. El resultado final, después de tirarte tres días tirando canicas y contando posiciones (unas 5.000 canicas), tiende a ser una distribución gaussiana. ¡Ojo! he dicho tiende, porque si se dibuja la gráfica de la función y se compara con la gráfica real obtenida, se verá que los resultados obtenidos y la curva gaussiana tienen ligeras divergencias. Nos proporciona la información de cómo puede caer una canica, pero hasta que no la tires (decisión), no puedes saber con exactitud dónde caerá.

El censo electoral de 2016 tiene inscritos a 36 millones y medio de electores. Con este tamaño objetivo de muestra, hacer fiable una encuesta de 2.000 posibles electores es bastante difícil, teniendo en cuenta la distribución de población española. No proporcionará los mismos resultados una pregunta hecha en Castilla-León o La Rioja que en Andalucía, Cataluña o Madrid. Esto es un hecho que se tiene que dar por descontado: la fiabilidad de una encuesta depende también de que la muestra, que ya es un 0,055‰ de la muestra real, sea además una representación lo más fiel posible de la realidad social de la población española. Representación bastante difícil de lograr, puesto que la diversidad de la sociedad española depende de su situación geográfica, del nivel económico de la zona, de las necesidades que se tienen, etc. Son muchas variables no controlables a tener en cuenta para lograr una fiabilidad al 100%. Por tanto, a la encuesta hay que darle un grado de confianza similar al que habría que darle a la previsión meteorológica: que es una previsión, una tendencia, pero que para nada es un dato objetivo final y que puede estar sometido a vaivenes incontrolables debido a los estímulos que afecten a la sociedad, y que no es responsabilidad de los encuestadores la existencia de esos estímulos.

Como experto en simulación que soy, tengo muy claro que no me fío de los resultados de una simulación hasta que no tengo completamente probado todo. La simulación me permite conocer de antemano tendencias y tomar una decisión, pero para nada es un resultado absoluto, ya que depende de variables que, si no las tengo definidas y las meto en el sistema, pueden proporcionarme resultados físicos contradictorios. Por eso, la simulación y la medida son experiencias interactivas, como lo deben ser las encuestas.

Este aluvión de encuestas y sondeos, con la inclusión del ya famoso mercado de la fruta andorrano, ha hecho que la campaña se haya dirigido más a tratar de cumplir los vaticinios que a estudiar los vaivenes sociales. Se ha tratado más de lograr aproximar los optimistas datos de las encuestas al resultado objetivo de la medición, que son las elecciones generales, sin tener en cuenta que esos datos sólo eran previsiones puntuales. Y esto ha provocado en muchas personas una sensación brutal de frustración. Una frustración similar a la que sufrió el veraneante que fue a Santander pensando en la bonita previsión del tiempo y tuvo que comprarse un paraguas porque en la vecina provincia de Burgos cambió la presión atmosférica debida a un cambio brusco de temperatura.

No obstante, tiene que seguir habiendo encuestas. No se puede pretender conocer la realidad de una sociedad sin preguntar y esto se tiene que seguir haciendo. Pero siempre sin perder el norte: no es un dato objetivo fruto de una medición definitiva, sino la trayectoria de la canica o el hecho de que en Burgos haya caído la temperatura. Y eso tiene que ser correctamente utilizado por quienes necesitan pulsar a la sociedad.1466915869_295178_1466977429_noticia_normal

 

Análisis estadísticos usando el método de Monte Carlo (y III)

imagesCon esta entrada cerramos el capítulo dedicado al análisis de Monte Carlo. En las dos entradas anteriores vimos cómo se podía usar éste método para analizar los eventos que pueden ocurrir en un dispositivo electrónico, sino también lo que sucede cuando tenemos variables correladas y cuando sometemos al circuito a un ajuste posproducción. Estos análisis son estimables, puesto que nos permiten conocer previamente el funcionamiento de nuestro circuito y tomar decisiones acerca del diseño, elegir las topologías y componentes adecuados y realizar un primer diseño en el que se optimice al máximo el comportamiento del nuestro circuito. En esta entrada vamos a ver un ejemplo, incluyendo un factor que suele ser importante y que tampoco se suele tener en cuenta en las simulaciones, y que es el análisis térmico. En este caso, utilizaremos un amplificador de potencia diseñado para trabajar en conmutación, que alimenta a una carga. El objetivo es encontrar el componente más sensible en el amplificador y poder elegir la topología o componente adecuados para que el circuito siga funcionando en todas las condiciones definidas.

Hemos visto lo útil que puede llegar a ser el análisis de Monte Carlo para elegir topologías y componentes, e incluso para definir el ajuste que tenemos que hacer en el caso de que se produzca defectivo durante un proceso de fabricación. Este análisis reduce el tiempo de desarrollo físico, porque proporciona de antemano una información importante de cómo se va a comportar nuestro diseño, antes de montarlo y evaluarlo. No obstante, hay que llegar más allá, rizando el rizo, y añadiendo el comportamiento térmico.

Los dispositivos electrónicos están no sólo sometidos a variaciones de valores nominales, debidas a su estructura física, sino que también presentan variaciones térmicas en función de la temperatura a la que estén sometidos en su funcionamiento. Los dispositivos que más suelen sufrir estas variaciones térmicas suelen ser aquellos que disipan elevadas cantidades de potencia, como las fuentes de alimentación, los microprocesadores y los amplificadores. Las variaciones térmicas desgastan el componente y comprometen su vida útil, reduciendo su vida media cuando trabajan al límite. Si hacemos estos análisis previamente, podemos marcar las pautas para lograr el mejor funcionamiento posible y obtener un diseño que garantice una vida media suficiente.

Estudio sobre un amplificador de potencia

A continuación vamos a estudiar el efecto producido sobre un amplificador de potencia en clase E, como el de la figura.

Amplificador clase E con MOSFET

Amplificador clase E con MOSFET

Este amplificador proporciona a una carga de 6+j⋅40Ω, a 1,5MHz, una potencia de AC de 23W, con una eficiencia del 88% sobre la potencia DC entregada por la fuente de alimentación. El MOSFET, que es el elemento que más se calienta cuando está disipando la potencia de conmutación, que es del orden de 2,5W, es el elemento más crítico del sistema, ya que hay que garantizar una extracción del calor que haga que su unión no se rompa por superar la temperatura de unión. El valor máximo que puede alcanzar dicha temperatura es 175ºC, pero se establece una temperatura de seguridad de 150ºC. Por tanto, el diseño realizado debe de ser capaz de soportar cualquier variación de potencia AC que pueda superar la temperatura máxima, no sólo en condiciones normales (a temperatura ambiente de 25ºC), sino incluyendo las variaciones que se puedan producir en el consumo del dispositivo activo debido a las tolerancias de los componentes.

En este circuito, los componentes más críticos, aparte de la dispersión que presenta el propio MOSFET, son los componentes pasivos. Estos componentes forman parte de la red de adaptación, que transmite la máxima energía desde la alimentación a la carga y provocan una variación en la respuesta del drenador que influye en su consumo. Siendo potencias considerables, con valores superiores a 10W, la variación de carga provocará variaciones importantes en la potencia disipada en el MOSFET y su estudio nos mostrará las necesidades para la extracción del calor generado en el MOSFET por efecto Joule.

Análisis estadístico en condiciones normales

Lo primero que tenemos es que analizar el circuito en condiciones normales de laboratorio (25ºC, 760mmHg, 50-70% de humedad relativa) y ver las variaciones que presenta, sólo por tolerancias. Consideramos tolerancias gaussianas de ±5% en valores límite, y analizamos exclusivamente las tolerancias en estas condiciones, para un 500 eventos. De esta manera podemos ver cómo afectan los componentes a la respuesta del circuito a través de la siguiente gráfica

Potencia

Potencia de DC y potencia en la carga, frente a número de eventos

El histograma azul representa la potencia de DC suministrada por la carga, cuyo valor central máximo es de 26,4W, mientras que el histograma rojo es la potencia transferida a la carga, cuyo valor central máximo es de 23,2W. Esto representa un 87,9% de eficiencia en la entrega de potencia. La desviación estándar de la potencia de carga es ±1,6%, lo que significa una tolerancia de ±6,5% en los valores límite. Bajo estas condiciones, podemos representar la potencia disipada del MOSFET, que se puede ver en la siguiente gráfica

Potencia disipada en el MOSFET vs. número de eventos

Potencia disipada en el MOSFET, frente al número de eventos

donde obtenemos una potencia media de 2,9W y una desviación estándar de 1,2W. Esto significa que la potencia máxima puede llegar a ser del orden de 7,8W.

Si calculamos con estos valores la diferencia entre la temperatura de la unión y la ambiente, teniendo en cuenta que las resistencias térmicas Rth-JC=1,7K/W y Rth-CH=0,7K/W, y usando un disipador con una resistencia térmica en condiciones de ventilación no forzada de Rth-HA=10K/W, se puede obtener, para una Tamb=25ºC

temp

Por tanto, a 25ºC, con una refrigeración no forzada, la temperatura de la unión está a 118,95ºC en el valor límite de potencia consumida por el MOSFET, proporcionándonos un margen suficiente sobre los 150ºC máximos a los que la unión se rompe.

Análisis estadístico para tres temperaturas

El análisis anterior nos garantiza un correcto funcionamiento en condiciones normales, pero, ¿qué ocurre cuando subimos o bajamos la temperatura? Vamos a analizar bajo tres condiciones de temperatura: 0ºC, 25ºC y 50ºC, y para representarlo usaremos un histograma multidimensional, en el que agruparemos todos los eventos sin discernir temperaturas. De este modo obtenemos

Potencia de DC y potencia en la carga, frente a número de eventos y temperatura

Potencia de DC y potencia en la carga, frente a número de eventos y temperatura

donde la potencia media entregada a la carga, en todas las condiciones, es 22,6W, para todas las condiciones térmicas, y la eficiencia media es del 86,6%, cubriendo el rango de temperaturas entre 0ºC y 50ºC.

Analizando ahora la potencia disipada por el MOSFET, en las mismas condiciones

temp_mos_power

Potencia disipada en el MOSFET, frente al número de eventos y la temperatura

donde calculando el valor medio, se obtiene 2,9W, con un máximo de 7,8W. Estos valores, similares al calculado anteriormente, muestran que la máxima temperatura de la unión va a ser 143,95ºC, a 7ºC de la temperatura máxima de seguridad de 150ºC, y por tanto a 32ºC de la temperatura máxima de la unión.

Por tanto, podemos concluir del análisis que el circuito diseñado, bajo las condiciones de temperatura ambiente de 0ºC a 50ºC, y siempre con un disipador con una resistencia térmica en ventilación no forzada de Rth-HA=10K/W, presentará un funcionamiento óptimo para el rango de potencia de carga.

CONCLUSIÓN

Con esta entrada finalizamos el capítulo dedicado al análisis usando el método de Monte Carlo. Con los análisis realizados, hemos cubierto la optimización de características a través de diferentes topologías, el ajuste posproducción en un proceso de montaje industrial y el análisis térmico para comprobar los límites de seguridad en los que trabaja un circuito de potencia. No obstante, el método proporciona muchas más posibilidades que se pueden explorar a partir de estos sencillos experimentos.

REFERENCIAS

  1. Castillo Ron, Enrique, “Introducción a la Estadística Aplicada”, Santander, NORAY, 1978, ISBN 84-300-0021-6.
  2. Peña Sánchez de Rivera, Daniel, “Fundamentos de Estadística”, Madrid,  Alianza Editorial, 2001, ISBN 84-206-8696-4.
  3. Kroese, Dirk P., y otros, “Why the Monte Carlo method is so important today”, 2014, WIREs Comp Stat, Vol. 6, págs. 386-392, DOI: 10.1002/wics.1314.