SHARENG Divulgación

Inicio » Radiofrecuencia

Category Archives: Radiofrecuencia

Diseñando con la Carta de Smith 3D

La Carta de Smith es una herramienta habitual en el diseño de circuitos de RF. Desarrollada por Phillip Smith en 1939, se ha convertido en el método gráfico más popular para representar impedancias y resolver de forma sencilla operaciones con números complejos. Tradicionalmente la Carta de Smith se ha usado en su forma polar, para dos dimensiones, en un círculo de radio 1. Sin embargo, la carta en su formato 2D presenta algunas restricciones cuando se trata de representar impedancias activas de osciladores o círculos de estabilidad de amplificadores, ya que estas últimas representaciones suelen salirse de la carta. En los últimos años se ha popularizado el uso de la Carta de Smith tridimensional. Los avances en el software de representación 3D posibilitan su uso para el diseño. En esta entrada se va a tratar de conocer el manejo de la Carta de Smith tridimensional y su aplicación a un secillo amplificador de baja figura de ruido.

Cuando Phillip Smith estaba trabajando en los Laboratorios Bell, se encontró con la necesidad de tener que adaptar una antena y para ello buscó una forma de resolver el problema gráficamente. Mediante las expresiones matemáticas que rigen las impedancias en las líneas de transmisión, logró representar el plano complejo de impedancias mediante círculos de resistencia y reactancia constante. Estos círculos le facilitaban el poder representar cualquier impedancia en un espacio polar, con la máxima adaptación situada en el centro de la carta y el círculo exterior representando la reactancia pura. Tradicionalmente, la carta de Smith ha sido representada en forma polar tal y como se observa a continuación.

Fig. 1 – Carta de Smith tradicional

Las impedancias se representan normalizadas, esto es, se representa la relación entre la impedancia que se quiere representar y la impedancia de generador. El centro de la carta es la resistencia pura unidad (máxima adaptación) mientras que el círculo periférico que limita la carta es la reactancia pura. El extremo izquierdo de la carta representa el cortocircuito puro y el extremo derecho, el circuito abierto puro. La carta se hizo enseguida muy popular para poder realizar cálculos de adaptación de impedancias con líneas de transmisión usando el método gráfico. Sin embargo,las dificultades de diseño con la carta empezaron a producirse cuando se quería analizar dispositivos activos como amplificadores, para estudiar su estabilidad, y osciladores.

Obviamente, la carta limita a las impedancias de parte real positiva, pero la carta puede representar, mediante extensión del plano complejo a través de la transformación de Möbius, impedancias con parte real negativa [1]. Esta carta expandida al plano de parte real negativa se puede ver en la siguiente figura

Fig. 2-Carta de Smith expandida a parte real negativa

Esta carta, sin embargo, tiene dos inconvenientes: 1) aunque nos permite representar todas las impedancias, existe el problema del infinito complejo, por lo que sigue limitada y 2) la carta toma unas dimensiones grandes que la hacen difícil de manejar en un entorno gráfico, incluso tratándose de un entorno asistido por computador. Sin embargo, su ampliación es necesaria cuando se desean analizar los círculos de estabilidad en amplificadores, ya que en muchas ocasiones, los centros de estos círculos están situados fuera de la carta de impedancias pasivas.

En un entorno gráfico por computador, representar los círculos ya lo realiza el propio programa a través de sus cálculos, pudiendo limitar la carta a la carta pasiva y dibujando sólo una parte del círculo de estabilidad. Pero con osciladores se sigue teniendo el problema del infinito complejo, cosa que se resuelve a través de la esfera de Riemann.

ESFERA DE RIEMANN

La esfera de Riemann es la solución matemática para representar todo el plano complejo, incluido el infinito. Toda la superficie compleja se representa en una superficie esférica mediante una proyección estereográfica de dicho plano.

Fig. 3 – Proyección del plano complejo a una esfera

En esta representación el hemisferio sur de la esfera representa el origen, el hemisferio norte representa el infinito y el ecuador el círculo de radio unidad. La distribución de los valores complejos en la esfera se puede ver en la siguiente figura

Fig. 4 – Distribución de los valores complejos en la esfera

De este modo, es posible representar cualquier número del espacio complejo en una superficie manejable.

REPRESENTANDO LA CARTA DE SMITH EN UNA ESFERA DE RIEMANN

Como la Carta de Smith es una representación compleja, se puede proyectar del mismo modo a una esfera de Riemann [2], tal y como se muestra en la figura siguiente

Fig. 5 – Proyección de la Carta de Smith sobre una esfera de Riemann

En este caso, el hemisferio norte corresponde a la impedancias de parte resistiva positiva (impedancias pasivas), en el hemisferio sur se representan las impedancias con resistencia negativa (impedancias activas), en el hemisferio este se representan las impedancias inductivas y en el oeste las impedancias capacitivas. El meridiano principal se corresponde con la impedancia resistiva pura.

Así, se se desea representar una impedancia cualquiera, ya sea activa o pasiva, se puede representar en cualquier punto de la esfera, facilitando notablemente su representación. Del mismo modo, se pueden representar los círculos de estabilidad de cualquier amplificador sin tener que expandir la carta. Por ejemplo, si queremos representar los círculos de estabilidad de un transistor cuyos parámetros S a 3GHz son

S11=0,82/-69,5   S21=5,66/113,8   S12=0,03/48,8  S22=0,72/-37,6

el resultado en la carta de Smith convencional sería

Fig. 6 – Representación tradicional de los círculos de estabilidad

mientras que en la carta tridimensional sería

Fig. 7 – Círculos de estabilidad en la carta tridimensional

donde se pueden ver ubicados ambos círculos, parte en el hemisferio norte y parte en el sur. Como se puede ver, se ha facilitado enormemente su representación.

UNA APLICACIÓN PRÁCTICA: AMPLIFICADOR DE BAJO RUIDO

Vamos a ver una aplicación práctica de la carta tratando de conseguir que el amplificador de la sección anterior esté adaptado a la máxima ganancia estable y mínima figura de ruido, a 3GHz. Usando los métodos tradicionales, y conociendo los datos del transistor, que son

S11=0,82/-69,5   S21=5,66/113,8   S12=0,03/48,8  S22=0,72/-37,6

NFmin=0,62  Γopt=0,5/67,5 Rn=0,2

Representamos en la carta de Smith tridimensional esos parámetros S y dibujamos los círculos de estabilidad del transistor. Para una mejor representación usamos 3 frecuencias, con un ancho de banda de 500MHz.

Fig. 8 – Parámetros S y círculos de estabilidad del transistor (S11 S21 S12 S22 Círculo se estabilidad de entrada Círculo de estabilidad de salida)

y podemos ver los parámetros S, así como los círculos de estabilidad, tanto en el diagrama polar convencional como en la carta tridimensional. Como se puede observar, en el diagrama polar convencional los círculos se salen de la carta.

Para que un amplificador sea incondicionalmente estable, los círculos de estabilidad deberían estar situados en la zona externa de impedancia pasiva de la carta (en la carta tridimensional, en el hemisferio sur, que es la región expandida) bajo dos condiciones: si los círculos son externos a la carta pasiva y no la rodean, la zona inestable se encuentra en el interior del círculo. Si rodean a la carta, las cargas inestables se encuentran en el exterior del círculo.

Fig. 9 – Posibles situaciones de los círculos de estabilidad en la región activa

En nuestro caso, al entrar parte de los círculos a la región de impedancias pasivas, el amplificador es condicionalmente estable. Entonces las impedancias que podrían desestabilizar el amplificador son las que se encuentran en el interior de los círculos. Esto es algo que todavía no se puede ver con claridad en la carta tridimensional, no parece que lo calcule y sería interesante de incluir en posteriores versiones, porque facilitaría enormemente el diseño.

Vamos ahora a adaptar la entrada para obtener el mínimo ruido. Para ello hay que diseñar una red de adaptación que partiendo de 50Ω llegue al coeficiente de reflexión Γopt y que representa una impedancia normalizada Zopt=0,86+j⋅1,07. En la carta de Smith tridimensional abrimos el diseño y representamos esta impedancia

Fig. 10 – Representación de Γopt

Ahora usando la admitancia, nos desplazamos en la región de conductancia constante hasta que obtengamos que la parte real de la impedancia sea 1. Esto lo hacemos tanteando y obtenemos una subsceptancia de 0,5,. Como hemos tenido que incrementar 0,5–(-0,57)=1,07, esto equivale a una capacidad a tierra de 1,14pF.

Fig. 11 – Transformación hasta el círculo de impedancia con parte real unidad.

Ahora sólo queda colocar un componente que anule la parte imaginaria de la impedancia (reactancia), a resistencia constante. Como la reactancia obtenida es -1,09, hay que añadir 1,09, por lo que el valor de reactancia se anula. Esto equivale a una inducción serie de 2,9nH.

Fig. 12 – Impedancia de generador adaptada a Γopt

Ya tenemos la red de adaptación de entrada que nos consigue la mínima figura de ruido. Como el dispositivo es activo, al colocar esta red de adaptación nos cambian los parámetros S del transistor. Los nuevos parámetros son:

S11=0,54/-177   S21=8,3/61,1   S12=0,04/-3,9  S22=0,72/-48,6

que representamos en la carta de Smith para ver sus círculos de estabilidad.

Fig. 13 – Transistor con entrada adaptada a Γopt y sus círculos de estabilidad

Las regiones inestables son las internas, por lo que el amplificador sigue siendo estable.

Ahora hay que adaptar la salida para obtener la máxima ganancia, por lo que hay que cargar a S22=0,72/-48,6 un coeficiente de reflexión ΓL adaptación conjugada, pasando de 50Ω a un coeficiente de reflexión ΓL=0,72/48,6. Esta operación se realiza del mismo modo que operamos en la adaptación de la entrada. Haciendo esta operación y obteniendo los parámetros S del conjunto completo, con redes de adaptación en entrada y salida, obtenemos

S11=0,83/145   S21=12/-7.5   S12=0,06/-72,5  S22=0,005/162

La ganancia es 20·log(S21)=21,6dB, y la figura de ruido obtenida es 0,62dB, que corresponde a su NFmin. Ahora sólo queda representar en la carta de Smith tridimensional estos parámetros para observar sus círculos de estabilidad.

Fig. 14 – Amplificador de bajo ruido y sus círculos de estabilidad

En este caso, la región estable del círculo de estabilidad de entrada es la interior, mientras que en el círculo de estabilidad de salida es la exterior. Como ambos coeficientes de reflexión, S11 y S22 se encuentran en la región estable, el amplificador es entonces estable.

CONCLUSIONES

En esta entrada hemos tenido la primera toma de contacto con la Carta de Smith tridimensional. El objetivo de la entrada era estudiar su potencial respecto a una herramienta ya tradicional en la ingeniería de Microondas como es la Carta de Smith tradicional. Se observan novedosas ventajas sobre ésta en cuanto a que podemos representar los valores infinitos de la transformada de Möbius sobre una esfera de Riemann y de este modo tener una herramienta gráfica tridimensional donde se pueden representar prácticamente todas las impedancias, tanto pasivas como activas, y parámetros difíciles de representar en la carta tradicional como los círculos de estabilidad.

En su versión 1 la herramienta, que se puede encontrar en la página web 3D Smith Chart / A New Vision in Microwave Analysis and Design, presenta bastantes opciones de diseño y configuración, aunque se echa de menos algunas aplicaciones que, sin duda, irán incorporándose en futuras versiones. En este caso, una de las aplicaciones más ventajosas para la carta, al haber estudiado los círculos de estabilidad de un amplificador, es la ubicación de las regiones de estabilidad de forma gráfica. Aunque esto lo podemos resolver por cálculo, siempre es más ventajosa la imagen visual.

La aplicación tiene un manual de usuario con ejemplos explicados de forma sencilla, de modo que el diseñador se familiarice enseguida con ella. En mi opinión profesional, es una herramienta idónea para los que estamos acostumbrados a usar la carta de Smith para realizar nuestros cálculos de redes de adaptación.

REFERENCIAS

  1. Müller, Andrei; Dascalu, Dan C; Soto, Pablo; Boria, Vicente E.; ” The 3D Smith Chart and Its Practical Applications”; Microwave Journal, vol. 5, no. 7, pp. 64–74, Jul. 2012
  2. Zelley, Chris; “A spherical representation of the Smith Chart”; IEEE Microwave, vol. 8, pp. 60–66, July 2007
  3. Grebennikov, Andrei; Kumar, Narendra; Yarman, Binboga S.; “Broadband RF and Microwave Amplifiers”; Boca Raton: CRC Press, 2016; ISBN 978-1-1388-0020-5
Anuncios

Ajustando filtros mediante el método de Dishal

filtroEn Telecomunicaciones es usual tener que usar filtros para poder eliminar frecuencias indeseadas. Estos filtros suelen ser de bandas muy estrechas y se suelen utilizar técnicas de líneas acopladas, por lo que en la mayor parte de los diseños se debe recurrir a la simulación electromagnética para verificar el diseño. La simulación electromagnética, aunque es una potente herramienta, suele ser lenta si se desea optimizar mediante algoritmos convencionales. Aunque estos algoritmos están incluidos en la mayor parte de los simuladores electromagnéticos, ya sea en 2D o en 3D, si la respuesta del filtro está muy alejada de la deseada, la optimización suele ser muy lenta, por lo que se requieren otros métodos que permitan ajustar previamente antes de realizar una optimización final. Uno de los métodos es el de Dishal, en el que se puede sintonizar un filtro de varias secciones a base de sintonizar cada una de ellas. En esta entrada, sintonizaremos un filtro microstrip de tipo HAIRPIN, de resonadores λ/2 acoplados, usando un simulador electromagnético como HPMomentum.

Los filtros son los dispositivos más comunes que se usan en Telecomunicaciones. Eliminan las frecuencias interferentes y el ruido, pudiendo procesar la señal recibida o transmitida de una forma más eficiente. Tienen bastante literatura para su diseño, y existen muchas combinaciones para obtener su respuesta. Sin embargo, es uno de los dispositivos en los que es más difícil obtener un óptimo resultado. Su sintonía física requiere habilidad y entrenamiento, y su sintonía en simulación paciencia y tiempo. Sin embargo, existen técnicas que permiten la optimización de un filtro a base de usar metodologías de ajuste que permita acercarse a los parámetros ideales del filtros. Una de metodología que permite sintonizar un filtro de forma sencilla es el método de Dishal y es el que vamos a usar para sintonizar un filtro paso banda HAIRPIN para la banda de subida de LTE-UHF.

Esta metodología permite realizar el ajuste de un filtro paso banda acoplado sintonizando tanto de los factores de calidad Qi y Qo que necesita el filtro para ser cargado, como de los factores de acoplamiento Mi,i+1 que acoplarán las diferentes etapas, de forma independiente. Estos parámetros son calculados a través de los parámetros del filtro prototipo, que se pueden obtener ya sea a través de las tablas presentes en cualquier libro de diseño de filtros como en programas de cálculo como MatLab. Las expresiones para calcular los parámetros fundamentales de un filtro paso banda acoplado son

formulas

donde fh y fl son las frecuencias de corte de la banda pasante, f0 es la frecuencia central y FBW el ancho de banda fraccional. Los valores g0..gn son los coeficientes del filtro prototipo normalizado. Con estos valores obtendremos los parámetros de acoplamiento de nuestro filtro.

FILTRO PASO BANDA HAIRPIN DE 5 SECCIONES

Vamos a desarrollar un filtro paso banda en tecnología microstrip, usando una configuración HAIRPIN de resonadores λ/2 acoplados. En este filtro, la línea resonante es una línea λ/2, que se acopla al siguiente resonador mediante la sección λ/4. O más concretamente, entre un 85 y un 95% de λ/4. Su denominación HAIRPIN es debida a que tiene forma física de peine. Nuestro filtro va a tener las siguientes características fundamentales:

  • Banda pasante : 791÷821MHz (banda de UHF para LTE de subida)
  • Número de secciones: 5
  • Tipo de filtro: Chebychev 1
  • Factor de rizado: 0,1dB
  • Impedancias de generador y carga: 50Ω

Con estos valores acudimos a las tablas para obtener los coeficientes g0..g6 del filtro prototipo y aplicando las expresiones anteriores obtenemos que

  • Qi=Qo=30,81
  • M12=M45=0,0297
  • M23=M34=0,0226

Con estos coeficientes se pueden calcular las impedancias Zoe y Zoo que definirán las líneas acopladas, así como la posición de los feeds de entrada y salida. En este último caso, esta posición se puede obtener a partir de

feed

Como soporte vamos a usar un substrato Rogers, el RO3006, que tiene una εr=6,15, usando un espesor de 0,76mm y 1oz de cobre (35μm). Con este substrato, el filtro obtenido es:

filter

y con estos valores, pasaremos a la simulación.

SIMULACIÓN DEL FILTRO PASO BANDA

Usando HPMomentum, el simulador electromagnético de ADS, vamos a poder simular la respuesta de este filtro, que se puede ver en la siguiente gráfica

Resultado de la simulación del filtro

Resultado de la simulación del filtro

que, la verdad sea dicha, no se nos parece ni por asomo a lo que pretendíamos realizar. El filtro está cerca de la frecuencia f0, tiene un ancho de banda de 30MHz, pero ni está centrado ni el rizado es, ni de lejos, 0,1dB. Por tanto, habrá que recurrir a una sintonía usando el método de Dishal y así llevar el filtro a la frecuencia deseada, con el acoplamiento deseado.

Buscando la posición del alimentador

Buscando la posición del alimentador

AJUSTANDO EL Q EXTERNO

En primer lugar vamos a ajustar los factores de calidad de los resonadores de generador y de carga, que tienen que ser de 30,81. Como ambos son iguales, la sintonía obtenida servirá para los dos. Para ajustar los Qi y Qo, tendremos que buscar la posición adecuada de la alimentación para que el valor sea el deseado.

Para calcular el Qext, se evalúa el coeficiente de reflexión del resonador y se obtiene su retardo de grupo. El factor de calidad será

qext Cuando hacemos la primera simulación y representamos Qext, obtenemos

qext2

donde se puede comprobar que ni el filtro está centrado ni su factor de calidad es el deseado. Para centrar el filtro, aumentamos la distancia entre las líneas en 1,1mm y recortamos las líneas resonantes en 0,34mm. De este modo, obtenemos

qext2_2

en el que ya están centradas las líneas, siendo el Qext de 37,28. Ahora aumentamos la distancia del feed al extremo de la pista en 0,54mm y obtenemos el Qext deseado.

qext2_3

Ya tenemos centrado el filtro y con el Qext requerido. Ahora tocaría ajustar los acoplamientos.

AJUSTE DE LOS ACOPLAMIENTOS

Para ajustar los acoplamientos, primero separamos el feed unos 0,2mm de la línea, y hacemos un espejo de la misma para que quede como sigue

coup_1

En este caso, para medir el acoplamiento usamos los picos que salen en la transmisión (S21), y aplicamos la expresión

coup_2

El resultado de la simulación, para el primer acoplo, es

coup_3

que como podemos comprobar está en el valor requerido.

En el caso del segundo acoplo

coup_4

que también está cerca de su valor requerido. Por tanto, con los cambios obtenidos, simulamos el filtro total y obtenemos

Filtro después de la primera sintonía

Filtro después de la primera sintonía

que ya se acerca al filtro deseado.

REITERANDO LA SINTONÍA

Si reiteramos sobre la sintonía, podremos llegar a mejorar el filtro hasta los valores que deseemos. Así, disminuyendo el Qext obtenemos

Disminución del Qext

Disminución del Qext

que supone ya una mejora importante. Jugando ahora con los acoplamientos, disminuyéndolos, llegamos a obtener

filt_3

Ajuste de los acoplamientos

que podemos dar por válido. Por tanto, el método de Dishal nos ha permitido, a partir de los parámetros calculados, ajustar el filtro hasta obtener las características deseadas.

CONCLUSIONES

Hemos analizado el método de Dishal como herramienta para el ajuste y sintonización de un filtro paso banda de 5 secciones, con óptimos resultados. La sencillez del método permite ajustar los principales parámetros de forma independiente, de manera que el ajuste final u optimización sean más sencillas, cosa de agradecer en simuladores electromagnéticos, que requieren de potencia de cálculo y tiempo de simulación. Vemos que el método, realizado paso a paso, nos permite ir ajustando las características hasta obtener el resultado deseado, por lo que podemos concluir que es un método muy útil en sintonización de filtros, tanto en discretos como en distribuidos, y que bien usado permite acercarse lo suficientemente al resultado final como para que la optimización electromagnética sea innecesaria.

REFERENCIAS

  1. Zverev, Anatol I., “Handbook of Filter Synthesys”, Hoboken, New Jersey : John Wiley & Sons Inc., 1967. ISBN 978-0-471-74942-4.

Estudio del comportamiento de un material piezoeléctrico (II)

En la entrada anterior habíamos estudiado el fenómeno piezoeléctrico a partir de las ecuaciones constitutivas que relacionan los campos eléctricos y mecánicos generados en el material. Los materiales piezoeléctricos se utilizan, gracias a este comportamiento, como componentes electrónicos con muy alta calidad. Su uso en filtros SAW, en resonadores BAW, en cristales de Cuarzo, para zumbadores e incluso como cargadores en Energy Harvesting hacen necesario, cada vez más, tener un modelo de circuito equivalente que defina correctamente el componente y su respuesta electroacústica. En esta entrada vamos a presentar un modelo, extraído en los años 40-50 por W.P. Mason y que sintetiza con bastante precisión los fenómenos electroacústicos tanto en su modelo lineal como no lineal.

MODELO DE MASON: EXTRACCIÓN

piezoelectrico

Esquema de un piezoeléctrico

Hemos dicho que un piezoeléctrico es un material electromecánico en el que aparecen fuerzas mecánicas cuando se le aplican fuerzas eléctricas y, recíprocamente, eléctricas cuando se aplican fuerzas mecánicas. La figura muestra un esquema dimensional de un material piezoeléctrico.

En el piezoeléctrico aplicamos un potencial eléctrico E⋅δz, y en ambas superficies del piezoeléctrico aparecen sendas tensiones T1 y T2, en cada una de las superficies del material. Aparecen también las velocidades de desplazamiento v1 y v2, que están relacionadas con el desplazamiento u a través de

velci

Por último, aparece una corriente eléctrica I en los electrodos del potencial eléctrico. Por último, las magnitudes de A y d son la superficie en m2 y el espesor del dieléctrico en m.

En la entrada anterior estudiamos el comportamiento piezoeléctrico a partir de sus ecuaciones constitutivas. Recordando entonces cómo se escribían estas ecuaciones, teníamos

consti

Se tiene que cumplir, además, la conservación de la energía a través de la ecuación de Lipmann

condi_campo

Combinando adecuadamente estas ecuaciones, habíamos obtenido una ecuación de onda definida por

onda2que corresponde a una onda de propagación.

Utilizando la expresión que liga v con la variación temporal de u, podemos escribir la 2ª Ley de Newton como

second_newton

Recordando, además, que la deformación S derivaba del gradiente de u, calculamos la variación de S con respecto al tiempo y obtenemos su relación con el gradiente de v. Expresándolo para un sistema unidimensional en el eje z, obtenemos

deforma_time

y despejando S de las ecuaciones constitutivas, obtenemos

segunda

Escalamos ahora las ecuaciones, multiplicando por A  los términos de ambas ecuaciones, y agrupándolas, obtenemos

telegraph

Si comparamos este resultado con las ecuaciones del Telegrafista que define una línea de transmisión para las ondas electromagnéticas, podemos comprobar que son similares. La primera relaciona la variación espacial de la tensión -A·T con la variación temporal de la corriente A·v, y correspondería a una inducción por unidad de longitud similar a la de un elemento diferencial de una línea de transmisión.

En la segunda ecuación, que relaciona la variación espacial de la corriente A·v, con respecto a una variación temporal de una tensión, representa una capacidad por unidad de longitud similar a la de la línea de transmisión. Sin embargo, en el segundo término de la ecuación, tenemos una dependencia con la tensión -A·T, que sería una línea de transmisión convencional, y otra dependencia con el desplazamiento eléctrico D. Esa dependencia se representa mediante una línea de transmisión flotante como la que se muestra en la figura siguiente.

linea_t

Modelo acústico del piezoeléctrico, en línea de transmisión, a partir de las ecuaciones del Telegrafista

De este modo ya tenemos asemejada la parte acústica a una línea de transmisión definida por los campos que actúan en las ecuaciones constitutivas.

Sin embargo, esta línea no está del todo completa, ya que hay que incluir el efecto de los electrodos, aislando los campos acústicos de los campos eléctricos. El término que relaciona la variación espacial de A·v con el desplazamiento D puede ser acoplado a través de un transformador ideal N:1, como se muestra en la figura

Acoplamiento de la parte acústica y la eléctrica mediante un transformador N:1

Acoplamiento de la parte acústica y la eléctrica mediante un transformador N:1

y la relación de N se puede calcular por

trafo_ratio

Vamos ahora a estudiar la corriente I. Esta corriente se produce cuando se aplica una tensión E⋅δz en los electrodos del piezoeléctrico. Al aplicar esa tensión, generamos una polarización P, debido al carácter dieléctrico del material. Del mismo modo, sabemos que la corriente I es una variación de la carga Q, y que sólo se producía variación de la carga superficial σ del piezoeléctrico, y que ésta es debida a la polarización P, no variando la carga volumétrica, por lo que

current_in

y como a la polarización P se opone el desplazamiento eléctrico D para mantener el campo electrico E, obtenemos que

current_desplaza

Estudiamos ahora el potencial E⋅δz aplicado en los electrodos. Usando las ecuaciones constitutivas, obtenemos que el potencial es

in_pote

Derivando esta expresión con respecto al tiempo, obtenemos

in_pote3

Estudiemos ahora los términos en δV1 y  δV2. En el término en δV1 podemos obtener la expresión

current_cap

y es la corriente que fluye a través de un condensador de valor CO , en paralelo con la tensión aplicada. Mientras, el término en δV2 se puede relacionar con la corriente que circula en la parte acústica a través de transformador, siendo Iprim la corriente que circula por el devanado primario del transformador. Usando las relaciones del transformador, podemos encontrar la relación de dicha corriente con esta tensión a través de

current_prim

Tenemos que hacer la consideración de que el peso de la tensión δV1>>δV2 , ya que al calcular la relación de transformación en el transformador hemos supuesto que es E⋅δz=δV, por lo que δV1δVδV20. De este modo, la corriente del primario es una corriente que circula a través de una capacidad negativa de valor CO.

Usando estos parámetros, deducidos de las ecuaciones constitutivas, es posible hacer un modelo completo del circuito equivalente de un piezoeléctrico, que se puede ver en la figura siguiente

mason_model

Circuito equivalente de Mason de un piezoeléctrico

CONDICIONES DE CONTORNO

Cualquier medio material está dentro de otros medios materiales (aire, agua, substratos semiconductores, metales, etc), y todos los medios materiales propagan ondas acústicas. Por tanto, así como en electromagnetismo definimos una impedancia de carga eléctrica sobre la que se transfiere la energía entregada desde el generador eléctrico, podemos definir una resistencia de carga acústica, que es donde se transfiere la energía acústica de la deformación. Esta resistencia de carga acústica está relacionada con la impedancia acústica del medio, y se transforma en una resistencia eléctrica a través de la expresión

acustic_resis

Por ejemplo, el aire tiene una impedancia acústica de 471 Rayls, así que para un piezoeléctrico AlN, con una superficie de 10.000μm2, si ambas superficies estuviesen en contacto con el aire, las impedancias de carga a conectar en los puertos A·T1 y A·T2 serían iguales y valdrían 4,71μΩ, lo que vendría a ser como colocar un cortocircuito en ambos puertos.

En el caso de que uno de los medios fuese aire y el otro, silicio, el silicio tiene una impedancia acústica de 8,35·105 Rayls, en el puerto del silicio habría que poner 8,35mΩ.

Hay que notar que, aunque la impedancia obtenida sea baja. no es estrictamente un cortocircuito. De hecho, al aire, que es el que más baja impedancia presenta, es al que consideramos un cortocircuito, mientras que el resto de materiales presentan impedancias acústicas más elevadas.

También es posible que tengamos un material compuesto de varios espesores de materiales, siendo uno de ellos piezoeléctrico, mientras que los demás son conductores o aislantes. Cuando esto ocurre, cada material puede ser representado por una línea de transmisión de igual modo que el piezoeléctrico. Por ejemplo, si el piezoeléctrico está encapsulado entre dos materiales diferentes, como el wolframio (W) y el molibdeno (Mo), y el wolframio está en contacto con el aire y el molibdeno con silicio, habría que añadir sendas líneas de transmisión entre las cargas y el piezoeléctrico, como se muestra en la figura siguiente

piezo_total

 

NO LINEALIDAD EN LOS MATERIALES: EL MODELO NO LINEAL DE MASON

En las condiciones de trabajo habituales de los piezoeléctricos, el funcionamiento debe de ser lineal. Sin embargo, los materiales presentan limitaciones que hay que tener en cuenta a la hora de trabajar con tensiones elevadas. Estas no linealidades introducen frecuencias espurias que reducen la calidad de la señal. Si estamos usando estos materiales en filtros de recepción, las no linealidades pueden representar un problema cuando una señal interferente de valor elevado atraviesa el material.

El piezoeléctrico es un resonador de muy alto factor de calidad. Traducido a parámetros discretos, se comporta como el circuito de la figura

Resonador equivalente de un piezoeléctrico

Resonador equivalente de un piezoeléctrico

La impedancia del resonador se puede representar en función de la frecuencia, obteniendo una gráfica similar a

impedancia

Impedancia del resonador en función de la frecuencia

El modelo, para bajos potenciales eléctricos, responderá correctamente de forma lineal. Sin embargo, a medida que aumentamos el valor del potencial eléctrico aplicado, empiezan a aparecer condiciones no lineales que limitarán su uso. Estas condiciones no lineales afectan, sobre todo, a las distorsiones de 2º y 3er orden, que son las que pueden afectar en mayor medida sobre la señal útil.

Una forma muy efectiva de simular no linealidades en circuitos eléctricos es el uso de las series de Volterra, una variante de los polinomios de Taylor en el que la respuesta depende en todo momento de los valores de los parámetros de entrada, incluyendo efectos de “memoria”, mediante acumulación de energía, de las capacidades e inducciones.

Como en las series de Taylor, las series de Volterra pueden ser truncadas en aquellos ordenes que sean superiores al que se considera dominante, por lo que nuestro modelo, considerando dominantes sobre todo el 2º y 3er orden de distorsión, puede truncarse a partir del 4º orden .

La distorsión afectará tanto al campo eléctrico como a la tensión mecánica. Las ecuaciones constitutivas, incluyendo estos efectos no lineales, quedarán descritas como

constitu_nolineal

siendo ΔT un polinomio de 3er orden que se expresa mediante la suma de 2 términos ΔT2T3, donde el subíndice indica que el polinomio es de 2º o de 3er orden. El caso de ΔD es similar.

Los polinomios que ΔT2, ΔT3, ΔD2 yΔD3 se muestran a continuación:

polinom

y además, se sigue teniendo que cumplir la ecuación de Lipmann para la conservación de la energía.

Las series que definen el modelo no lineal se pueden introducir en el modelo lineal de Mason a través de fuentes de tensión dependientes, tanto en la zona eléctrica como en la zona acústica. A dichas fuentes las denominamos VC y TC y están situadas, dentro del modelo, en la entrada eléctrica (caso de VC) y en línea común de la corriente de secundario (caso de  TC), tal y como se muestra en la figura.

Modelo de Mason con las fuentes no lineales

Modelo de Mason con las fuentes no lineales

Estas fuentes se derivan de las ecuaciones constitutivas del mismo modo que hemos derivado el modelo lineal, y se obtienen sus expresiones, que son

ecuaciones_nolin

Con estas expresiones en el modelo de Mason, tenemos un modelo equivalente no lineal de un material piezoeléctrico, que incluye los efectos de 2º y 3er orden de distorsión, y podemos estudiar el comportamiento de un componente fabricado con este tipo de materiales en presencia de señales interferentes.

CONCLUSIÓN

En esta entrada hemos querido presentar un modelo eléctrico útil para representar un material piezoeléctrico, extraído a partir de las ecuaciones constitutivas. Esto nos ha permitido llegar al modelo que W.P. Mason obtuvo en los años 40, y entender cómo realizó la extracción de los parámetros del modelo.

No sólo hemos obtenido el modelo de Mason, sino que hemos parametrizado un modelo que pueda representar las variaciones no lineales a partir de las series de Volterra, que nos permitirán realizar un modelo no lineal que incluya los efectos de 2º y 3er orden de distorsión, y poder predecir la respuesta de un dispositivo de estas características en condiciones de señales interferentes.

En la próxima entrada vamos a proceder a estudiar el modelo en un simulador, mostrando cómo se realiza un modelo equivalente del piezoeléctrico incluyendo los parámetros no lineales, describiremos un método de medida para extraer los parámetros no lineales y mostraremos los resultados obtenidos mediante simulación.

REFERENCIAS

  1. W.P. Mason, Electromechanical Transducers and Wave Filters”, Princeton NJ, Van Nostrand, 1948
  2. J. F. Rosenbaum, “Bulk Acoustic Wave Theory and Devices”, Artech House, Boston, 1988.
  3. M. Redwood, “Transient performance of a piezoelectric transducer”, J. Acoust. Soc. Amer., vol. 33, no. 4, pp. 527-536, April 1961.
  4. R. Krimholtz, D.A. Leedom, G.L. Mathaei, “New Equivalent Circuit for Elementary Piezoelectric Transducers”, Electron. Lett. 6, pp. 398-399, June 1970.
  5. Y. Cho and J. Wakita, “Nonlinear equivalent circuits of acoustic devices”, Proc. IEEE Ultrason. Symp., Nov. 1993, vol. 2, pp. 867–872.
  6. C. Collado, E. Rocas, J. Mateu, A. Padilla, and J. M. O’Callaghan, “Nonlinear Distributed Model for BAW Resonators”, IEEE Trans. On Microwave Theory and Techniques, vol. 57, no. 12, pp. 3019-3029, Dec. 2009.
  7. E. Rocas, C. Collado, J.C. Booth, E. Iborra, and R. Aigner, “Unified Model for Bulk Acoustic Wave Resonators’ Nonlinear Effects”, Proc. 2009 IEEE Ultrasonics Symposium, pp. 880-884, Sept. 2009.
  8. M. Ueda, M Iwaki, T. Nishihara, Y. Satoh, and K Hashimoto, “Investigation on Nonlinear Distortion of Acoustic Devices for Radio-Freqquency Applications and Its Suppression”, Proc. 2009 IEEE Ultrasonics Symposium, pp. 876-879, Sept. 2009.
  9. M. Ueda, M Iwaki, T. Nishihara, Y. Satoh, and K Hashimoto, “A Circuit Model for Nonlinear Simulation of Radio-Frequency Filters Employing Bulk Acoustic Wave Resonators”, IEEE Trans. On Ultrasonics, Ferroelectrics, and Frequency control, vol. 55, 2008, pp. 849-856.
  10. D. S. Shim and D. Feld, “A General Nonlinear Mason Model of Arbitrary Nonlinearities in a Piezoelectric Film”, Proc. 2010 IEEE Ultrasonics Symposium, pp. 295-300, Oct. 2010.
  11. D. Feld, “One-Parameter Nonlinear Mason Model for Predicting 2nd & 3rd Order Nonlinearities in BAW Devices”, Proc. 2009 IEEE Ultrasonics Symposium, pp. 1082-1087, Sept. 2009.

Estudio avanzado de los radioenlaces

Hablabamos en diciembre del año pasado del cálculo de radioenlaces. Habíamos puesto como modelos iniciales para dicho cálculo el del espacio libre (representado por la fórmula de Friis) y los modelos de Okumura y Okumura-Hata, que son modelos extrapolados de cálculos estadísticos realizados a través de mediciones reales en entornos urbanos. Sin embargo, estos modelos no incluyen la orografía del terreno, la obstrucción debida a los propios enlaces o fenómenos como la difracción. Estos fenómenos físicos son bastante complejos de analizar, pero cualquier radioenlace que los incluya tendrá más posibilidades de éxito que los que se realicen con el simple modelo del espacio libre o el de Okumura-Hata. En esta entrada estudiamos el modelo de Longley-Rice, basado en el modelo de tierra irregular, que data de los años 60 y que fue desarrollado debido a la que los EE.UU. estaban realizando un plan de asignación de frecuencias para la difusión de TV (Broadcast).

EL MODELO DE LONGLEY-RICE

El modelo de Longley-Rice es un modelo de tierra irregular, conocido por las siglas ITM. Es un modelo de estudio de cobertura de radioenlaces, inicialmente pensado para la cobertura broadcast de TV, dentro del plan de asignación de frecuencias del espectro radioeléctrico.

El modelo se basa en la aplicación de los fenómenos físicos ya conocidos: atenuación en el espacio libre de Friis, elipsoides de Fresnel, difracción, trayectorias multicamino, etc., a los que se añade el efecto de la irregularidad de la Tierra. A partir de ese modelo, se realizan análisis estadísticos de cobertura que se plasman en algoritmos que permitan una predicción lo más atinada posible de esa cobertura.

Imagen de una Tierra con orografía irregular

La Tierra no es regular. Si añadimos al fenómeno de la curvatura terrestre el de la orografía, la propagación electromagnética se encuentra con muchos obstáculos. A frecuencias por debajo de los 30MHz, la emisión radiada suele ser bastante eficaz (las célebres emisoras de Onda Media y Onda Corta), llegando a muchas partes del planeta gracias a la reflexión en la ionosfera, permitiendo que lleguen a otras partes del planeta e incluso dar una vuelta completa. Son las bandas de transmisión de radio y de los radioaficionados, y por lo general es el propio planeta el repetidor.

En función de la banda, las frecuencias radiadas se verán favorecidas en la radioemisión, siendo la banda más baja (Onda Media) una banda nocturna (se ve más favorecida en alcance por la noche), y pasando a diurna hasta que los fenómenos de reflexión debidos a la ionosfera desaparecen y se vuelven caprichosos.

El modelo ITM cubre la banda de 20MHz÷20GHz y hasta 2000km, aunque se está extendiendo ya, debido a la necesidad de realizar radioenlaces a más alta frecuencia, hasta los 40GHz.

El modelo, que incluye los fenómenos electromagnéticos ya conocidos y los combina con una cartografía terrestre donde se incluyen los fenómenos urbanos, de bosque, orográficos y de obstáculos, permite, mediante un análisis estadístico, conocer las posibilidades de una cobertura realizada por un repetidor, estimando cuáles son los valores medios que se pueden llegar a tener en un receptor fijo y en uno móvil.

No obstante, el modelo, que nació en 1968, está en continua evolución, puesto que algunos resultados muestran diferencias con las medidas realizadas, por lo que se hace necesaria una combinación de diversos modelos para tener una estimación más realista.

SOFTWARE BASADO EN LONGLEY-RICE

Existen varias aplicaciones basadas en el modelo de Longley-Rice. Una de ellas, libre y muy sencilla de usar, está realizada por el ingeniero de RF canadiense Roger Coudé, denominada Radio Mobile. Con ella es posible cargar un mapa de una cierta zona, abarcando un determinado territorio, y establecer una red de radioenlaces en la que podamos estudiar la cobertura con cierta seguridad.

El software, de tipo freeware, establece la definición de los sistemas, del tipo de red, de la orografía del terreno, del entorno climático, del tipo de orografía del terreno. También permite la definición de las potencias emitidas por el transmisor y las recibidas por el receptor, así como las ganancias de antena y el tipo de antena utilizado.

Análisis de un enlace de radio punto a punto.

El software permite el análisis punto a punto con la transcripción de la orografía del terreno, representando, además, las elipsoides de Fresnel, y mostrando las contribuciones a las pérdidas en el espacio libre de las obstrucciones, los entornos urbanos y las zonas boscosas.

También es posible analizar redes punto-multipunto, topologías de tipo estrella o de tipo cluster.

Una de las cosas más interesantes del programa es la posibilidad de realizar sobre el mapa diagramas de cobertura, limitando los parámetros óptimos de la red y caracterizándola en función de la posición sobre el terreno, así como de obtener localizaciones favorecidas para obtener la mejor ubicación.

No obstante, tenemos que recordar que se trata de un simulador, y como todos los simuladores, tiene la eficiencia de la cantidad de datos que proporcionemos, y muchos de ellos no son de fácil modelización. Para ello, voy a estudiar un ejemplo que realicé hace unos años con un radioenlace que tuve que colocar en un camping de la Bretaña francesa, en Quimper.

EL PROBLEMA DEL CAMPING DE QUIMPER

En el año 2008 tuve que ir a instalar un radioenlace en el camping Port de Plaisance, en Quimper. Se trataba de una instalación destinada a emitir la TNT (Télévision Numérique Terrestre) dentro del entorno del camping, ya que la señal del repetidor llegaba con una señal ya muy baja a algunos de los bungalows del camping.

Parecía que se trataba de una instalación sencilla: el camping no tenía más de 700m de longitud, por lo que un repetidor de 500mW parecía más que suficiente para cubrir el terreno. El problema partía de la normativa de TNT en Francia exigía que cualquier repetidor tenía que ponerse en modo SFN (Single Frequency Network), por lo que había que emitir en el mismo canal que se recibía. No era posible realizar, pues, cambio de canalización.

Esta situación limitaba mucho la potencia de nuestro repetidor, ya que al emitir en la misma frecuencia y carecer de un sistema de cancelación de ecos (realimentación producida al acoplarse la frecuencia emitida en la antena de recepción del repetidor), había que disminuir el nivel de salida del repetidor para evitar oscilaciones.

El camping tenía una distribución que podemos ver en el siguiente mapa:

benodet

Camping “Port de Plaisance”

Por supuesto, el objetivo era cubrir todos los bungalows, y para ello utilizamos el modelo de espacio libre. La ubicación tanto de la antena de recepción como la de transmisión fueron definidas por la dirección del camping, así como la ubicación de los equipos, que serían colocados en unas dependencias a las que no podían acceder los clientes.

Atendiendo al modelo de cobertura del espacio libre, teníamos entre 70 y 80dB de pérdidas en las frecuencias de UHF en las que íbamos a emitir. Por tanto, el problema de la potencia quedaba resuelto, ya que con 50mW de emisión llegábamos perfectamente a cualquier punto del camping con una antena omnidireccional, con una ganancia del orden de 9dBi. De hecho, en el peor punto llegábamos con 57dBμV, 10dB más que los que se recomiendan como límite inferior para recibir una señal de TV COFDM correcta. Así que con la alegría de que íbamos a poner un repetidor en Francia, nos acercamos a Quimper a finales del invierno de 2008, a hacer la instalación y tomar las medidas.

El primer inconveniente con el que nos encontramos fue, precisamente, el problema de la realimentación. Ya sabíamos que podría ocurrir, pero las estimaciones calculadas y las reales nos mostraron que no podíamos sacar más de 75mW en el mejor de los casos, y con este nivel en algunas ocasiones el canal concreto se ponía a oscilar. El valor de 50mW era también algo optimista, aunque era un valor, en principio, seguro.

Otra de las cosas que no introdujimos en los cálculos era el gran número de ostáculos a los que se enfrentaba nuestro repetidor. Como buen camping situado en una zona tan húmeda como la Bretaña francesa, el terreno tenía abundante vegetación y arbolado, y en muchas ocasiones los árboles se topaban con el camino radioeléctrico como si fuesen un muro. No obstante, logramos colocar el repetidor y de las mediciones que hicimos, vimos que teníamos nivel de señal óptimo, aunque 6 o 7 dB inferior al que el modelo del espacio libre nos predecía.

Al cabo de dos meses, desde la dirección del camping nos telefonearon indicando que en muchos sitios del camping no se recibía la señal de TNT, y que los clientes se quejaban porque era un servicio ofertado por el camping y querían dicho servicio. Así que con los equipos en la mano, volvimos para estudiar “in situ” lo que ocurría.

A nuestra llegada, pudimos comprobar con estupor que las arboledas sin hojas de marzo se habían convertido en un frondoso bosque. Teniendo a mano las medidas realizadas, volvimos a hacer la comparativa y donde antes teníamos del orden de 50dBμV, ahora teníamos menos de 45dBμV, por lo que en algunos sitios la señal estaba pixelando continuamente o entraba a negro, dependiendo de la calidad del receptor. Un desastre, vamos.

Así que tuvimos que recurrir a reajustar el repetidor, teniendo en cuenta que no podíamos dar más de 75mW, si no queríamos que el canal oscilase. La dirección del camping tampoco permitía el cambio de canal, por lo que teníamos pocas opciones. Así que la solución fue buscar un punto de potencia de salida que permitiese la cobertura justa, e intentar buscar los lugares donde esta cobertura era mala, para intentar dar con una solución, que consistía en la instalación de un microrrepetidor de menos potencia.

Por tanto, ahí descubrí que el modelo del espacio libre era eso: del espacio libre. No era válido para realizar una estimación de cobertura para una instalación sobre un determinado terreno.

¿Y SI HUBIESE TENIDO EL SIMULADOR RADIO MOBILE?

Hoy, después de 6 años y medio de aquella instalación, he hecho el análisis de la misma a través del software Radio Mobile y me he encontrado con que aquellos datos que tomé en su momento eran correctos, y que mi hipótesis inicial, presentada en el informe de la instalación, era acertada. Al justificar que la existencia de obstrucciones en el camping no me permitían una cobertura total, las conclusiones eran discutidas y tomadas como poco rigurosas.

De hecho, al tomar el peor punto de la red, que llamaremos Receptor 2, pude comprobar que en condiciones de obstrucción la señal, que en espacio libre estaba sobrada, estaba atenuada en 12dB más, lo que hacía que la señal cayese por debajo de la señal que habíamos puesto como límite, e incluso por debajo de la señal óptima.

Transmisión simulada en el punto peor del camping Port de Plaisance

Entonces, decidí hacer una simulación de la cobertura desde el repetidor, para ver cómo se distribuía la señal, y obtuve el siguiente plano de cobertura

Mapa de cobertura del camping “Port de Plaisance”. En rojo, fuera de cobertura. En amarillo, cobertura débil. En verde, buena cobertura.

donde pude comprobar, a partir del mapa de terreno que usa el programa, que había zonas internas de mala cobertura y que las zonas donde tenía una cobertura débil (que dependiendo de las condiciones climatológicas podía ser incluso mala), eran superiores a las que en principio me mostraba el modelo del espacio libre. Y que la zona en la que el modelo de espacio libre nos daba como peor, pero dentro de características, se ajustaba a los valores obtenidos en las medidas.

CONCLUSIONES

Si hubiese tenido este software de simulación en el momento de estudiar la instalación del repetidor en “Port de Plaisance”, para nada hubiese acudido a montar el repetidor si no tengo la cobertura garantizada. Incluso con el máximo nivel de 500mW la cobertura no estaba garantizada, con algunas zonas de sombra que no podríamos cubrir.

cover2

Cobertura con el máximo nivel de 500mW.

El programa me ha demostrado, pues, mucha utilidad para el cálculo de coberturas. Al menos, se obtienen cosas bastante más realistas que el optimismo inicial del modelo del espacio libre.

REFERENCIAS

  1. P.L. Rice, “Transmission loss predictions for tropospheric communication circuits”, Volume I & II, National Bureau of Standards, Tech. Note 101
  2. A. G. Longley and P. L. Rice, “Prediction of tropospheric radio transmission loss over irregular terrain. A computer method-1968”, ESSA Tech. Rep. ERL 79-ITS 67, U.S. Government Printing Office, Washington, DC, July 1968

Como simular parámetros S usando un simulador convencional

Simuladores de circuitos hay muchos. Los usuarios de este tipo de aplicaciones software podrían decir varios tipos, desde LTSpice, PSpice, Electronic Workbench, Microwave Office, Advance Design System, Genesys, etc. Se puede hacer una larga lista y se encontrarían para todos los gustos. Además, casi todos tienen las simulaciones importantes: análisis en DC, en AC, transitorios, análisis de ruido, etc. En esta entrada rememoro un artículo que escribí en octubre de 1997 y en el que mostraba cómo se podía simular un circuito de RF usando el simulador SPICE.

Un simulador de circuitos es una aplicación que permite analizar el comportamiento eléctrico de circuitos electrónicos a través de su descripción esquemática. Por tanto, una vez dibujado el circuito y a través de las librerías que describen el comportamiento de los componentes, es posible analizar la respuesta de un esquema eléctrico en diversos tipos de análisis. Así, podemos encontrarnos con posibilidad de analizar DC, AC, análisis transitorios, análisis de ruido, trasformadas de Fourier, etc.

Dentro de los simuladores existen varios tipos, algunos como el Advanced Design System o el Microwave Office, que están especialmente diseñados para analizar circuitos de alta frecuencia, usando las técnicas matriciales como los parámetros ABCDlas matrices Z e Y y los parámetros S. En los circuitos de alta frecuencia, el método de analizar el comportamiento en frecuencia de un circuito es a través de los parámetros S.

Para ello, el circuito se analiza como un cuadripolo, en el que se definen unas ondas incidentes (a1, a2) y unas ondas reflejadas (b1, b2), tal y como se muestra en la figura

Cuadripolo con ondas incidentes y reflejadas.

Cuadripolo con ondas incidentes y reflejadas.

Los parámetros S se definen a través de la siguiente relación matricial

Relación entre las ondas a través de la matriz de parámetros S

Relación entre las ondas a través de la matriz de parámetros S

de tal modo que cada uno de los parámetros S de la matriz refleja un significado eléctrico. Estos son:

  • S11: Es la relación entre la onda reflejada b1 y la onda incidente a1, cuando no hay onda incidente a2. El parámetro es equivalente al coeficiente de reflexión en la entrada, y representa la onda estacionaria que se produce en la entrada del cuadripolo.
  • S21: Es la relación entre onda saliente b2 y la onda incidente a1, cuando no hay onda incidente a2. El parámetro es equivalente a la transmisión de señal desde la entrada a la salida, y representa el trasvase de energía que se produce del puerto de entrada del cuadripolo al puerto de salida.
  • S12: Es la relación entre onda saliente b1 y la onda incidente a2, cuando no hay onda incidente a1. El parámetro es equivalente a la transmisión de señal desde la salida a la entrada, y representa el trasvase de energía que se produce del puerto de salida del cuadripolo al puerto de entrada.
  • S22: Es la relación entre la onda reflejada b2 y la onda incidente a2, cuando no hay onda incidente a1. El parámetro es equivalente al coeficiente de reflexión en la salida, y representa la onda estacionaria que se produce en la salida del cuadripolo.

Las ondas a1, a2 y b1, b2 se pueden escribir, en función de las tensiones incidente y reflejada, mediante las expresiones

descarga1

d373feaaf9a9c377c1a213557c5606ba

siendo Vn+ la tensión incidente y Vn la reflejada, sobre una impedancia característica Z0.

Por tanto, la matriz de parámetros S ofrece una forma muy útil de analizar circuitos de alta frecuencia. Sin embargo, no todos los simuladores son capaces de ofrecer en sus tipos de análisis este tipo de representación de matricial.

¿Cómo construir una equivalencia que permita analizar parámetros S en un simulador que no tiene dicha función?

Ante todo hay que recordar que un análisis de parámetros S es una simulación específica de AC. Y este tipo de simulación está incluida en casi todos los simuladores de circuitos.  Sin embargo, el análisis AC sólo permite calcular tensiones y corrientes globales, no separando en incidentes y reflejadas. Por tanto, la única cuestión es que hay que realizar una transformación para encontrar un circuito equivalente que permita, usando las tensiones y corrientes globales del circuito, mediante el análisis AC, calcular los parámetros S.

Para ello se propone el siguiente cuadripolo:

Cuadripolo con tensiones y corrientes de AC

Cuadripolo con tensiones y corrientes de AC

En el cuadripolo tenemos una tensión de generador Vg, una resistencia de generador Rg, una resistencia de carga RL y unas tensiones Vi (generada por la impedancia Zi de entrada al cuadripolo) y una tensión Vo (que tiene una resistencia equivalente Zo en el cuadripolo). Vamos a suponer además, para simplificar los cálculos, que Rg=RL=Z0. A partir de ahora vamos a calcular, en primer lugar, el coeficiente de reflexión a la entrada y la transmisión entre entrada y salida. Las expresiones para calcular estos parámetros son:

Expresiones de cálculo de S11 y S21 en función de las impedancias y las tensiones

Expresiones de cálculo de S11 y S21 en función de las impedancias y las tensiones

pero del circuito también tenemos que Vi se puede calcular a través del divisor de tensión de entrada formado por Vg, Z0 y Zi:

Cálculo de la tensión de entrada al cuadripolo.

Cálculo de la tensión de entrada al cuadripolo.

y sustituyendo esta expresión en la de S21 podemos obtener la relación entre la tensión de salida Vo y la del generador Vg

Expresión de la tensión Vo en función de Vg

Expresión de la tensión Vo en función de Vg

Por tanto, para calcular S21 basta con colocar en el generador una fuente de AC de amplitud Vg=2, y la tensión de salida Vo equivaldría al parámetro S21.

El parámetro S11 se calcularía a través de la expresión del coeficiente de reflexión y del cálculo del divisor de tensión, cuando Vg=2. Del divisor de tensión tenemos que

Cálculo de S11 cuando Vg=2

Cálculo de S11 cuando Vg=2

por lo tanto, el parámetro S11 se puede calcular obteniendo la tensión en Vo y restando 1V.

Esquema de nuestro circuito equivalente

Ahora vamos a transformar en esquema eléctrico nuestro circuito equivalente. En principio tenemos un generador de AC de valor 2V, que equivale a Vg y la impedancia de generador y carga de valor Z0. A eso le añadimos un circuito en el punto de Vi consistente en un generador de 1V de AC y una resistencia de valor elevado, para que no circule corriente a través de ella.

Circuito equivalente para analizar S11 y S21 con un análisis en AC

Circuito equivalente para analizar S11 y S21 con un análisis en AC

Usando este circuito equivalente en un cuadripolo, se pueden entonces analizar los parámetros S del mismo usando el análisis AC de cualquier simulador. Es un circuito de mucha utilidad cuando se diseña en alta frecuencia, ya que los analizadores suelen usar los parámetros S para analizar los cuadripolos.

Comprobación del circuito equivalente.

Por último, para comprobar la fiabilidad del circuito equivalente confeccionado, vamos a estudiar el comportamiento de un cuadripolo sencillo, tipo filtro de alta frecuencia, y comparar con el resultado obtenido en un simulador convencional.

Cuadripolo a testear

Cuadripolo a testear

Realizando la simulación en un simulador de alta frecuencia se obtiene el siguiente resultado

Resultado de la simulación del filtro en un simulador de alta frecuencia

Resultado de la simulación del filtro en un simulador de alta frecuencia

Simulamos ahora el filtro en un simulador tipo Electronic Workbench, usando el circuito

Filtro simulado con Electronic Workbench

Filtro simulado con Electronic Workbench

y cuyo resultado es

Resultados en la simulación en Electronic Workbench

Resultados en la simulación en Electronic Workbench

y si lo comparamos con el resultado obtenido con el simulador de alta frecuencia, se puede comprobar que las gráficas son idénticas en módulo y fase.

Conclusiones

En esta entrada hemos conseguido un circuito sencillo que permite simular parámetros S de cualquier cuadripolo en un simulador convencional, no optimizado para el diseño en alta frecuencia. Este circuito nos proporciona una herramienta muy versátil si queremos trabajar con dispositivos que están caracterizados mediante parámetros S, o simplemente simular cuadripolos que después se vayan a medir con un analizador de redes. De esta manera, somos capaces de simular cualquier circuito en nuestro simulador habitual, sin tener que recurrir a otro tipo de simuladores.

REFERENCIAS

  1. T. Rosich; “Simulación de circuitos de RF con SPICE : parte 1”; Revista Española de Electrónica No. 515;  pp. 67-69; ISSN 0482-6396; oct 1997
  2. J. Everard; “Fundamentals of RF Circuit Design”; Wiley; IBSN 0-471-49793-2; 2001

Amplificador de Banda Ultra Ancha con Baja Ganancia y Alto Rango Dinámico

En la siguiente entrada vamos a analizar un tipo de amplificador que tiene la ventaja de funcionar en banda ultra ancha y que presenta un rango dinámico muy elevado, tanto por su baja figura de ruido como por su alto nivel de salida. El cuadripolo presentado funciona usando el principio de realimentación, si bien se sustituye la realimentación clásica de resistencias por una realimentación basada en acoplador direccional. A partir de este momento, conoceremos este tipo de configuración como “realimentación inductiva”.

En muchas ocasiones hemos tenido la necesidad de dotarnos de un amplificador que pueda cubrir un rango muy amplio de banda (en torno a varias octavas) y que mantenga el rango dinámico del dispositivo semiconductor utilizado. Los métodos clásicos de realimentar amplificadores, basados en sistemas resistivos, suelen ser muy eficientes en cobertura de banda, pero tienen el inconveniente de que las resistencias generan ruido térmico y disipan potencia, por lo que el amplificador siempre suele tener más ruido y menos nivel de salida que el transistor convencional.

El sistema inductivo presenta una ventaja considerable con respecto al resistivo convencional: un acoplador direccional es un dispositivo completamente reactivo, por lo que no presenta más pérdidas que las debidas a la resistencia parásita del acoplador, cuya contribución al ruido siempre es inferior a la de una resistencia convencional.

Pero antes de pasar a describir la aplicación, vamos a recordar en qué consiste un sistema realimentado.

SISTEMAS REALIMENTADOS

En Teoría de Sistemas, un sistema realimentado es aquel que toma una muestra de la señal de salida y la compara con la entrada para modificar, estabilizar u obtener una respuesta lo más adecuada posible. Se trata del sistema de control básico, ya que una señal y(t)=A(x(t), t)·x(t) puede variar en función de t y en función de x(t). Debemos recordar que en un sistema lineal, A=cte. Es decir, que en las condiciones básicas de trabajo, una variación de t o de x(t) no deberían influir en A. Por tanto, un amplificador lineal responderá de la forma y(t)=A·x(t), siendo A un valor constante, que es lo que denominamos ganancia.

En la mayoría de los casos, A responde de forma constante, pero al aplicar la transformada de Fourier a nuestro sistema, Y(ω)=A(ω)·X(ω). O sea, que la ganancia A(ω) depende de la frecuencia. Sin embargo, sigue respondiendo como un sistema lineal, ya que no hay dependencia de x(t).

En la mayor parte de los semiconductores usados como amplificadores, la ganancia A(ω) disminuye, del orden de 6dB/oct, por lo que conseguir la misma respuesta en un ancho de banda grande requiere de técnicas de realimentación.

Un sistema realimentado presenta un diagrama de bloques como el de la figura

Sistema realimentado clásico simple

Sistema realimentado clásico simple

La señal de salida Y(ω) se compara con la señal de entrada X(ω) a través de una red pasiva K. La respuesta en frecuencia del sistema es

Función de transferencia de un sistema realimentado

Función de transferencia de un sistema realimentado

Por tanto, la ganancia del sistema ya no es A(ω), sino que se ha reducido al dividirla por 1+K·A(ω). Si además elegimos un K·A(ω)>>1 en la zona donde queremos trabajar, podremos ver que la ganancia del sistema realimentado no depende de la zona activa A(ω), sino de la pasiva K. Si elegimos una red de realimentación K que no dependa de la pulsación ω, podremos realizar un dispositivo amplificador que no dependa del dispositivo utilizado, sino exclusivamente de la red de realimentación utilizada para obtener la ganancia

Reducción cuando la K.A>>1

Reducción cuando la K.A>>1

Al sólo depender de K, los sistemas realimentados resistivos suelen ser muy habituales para obtener respuestas en bandas ultra anchas, ya que las resistencias no dependen (salvo por sus comportamientos parásitos propios de la fabricación) de la frecuencia. Es por esto que la mayor parte de la bibliografía dedicada a los amplificadores se dedica a los realimentados resistivos, frente a otro tipo de amplificadores.

AMPLIFICADORES REALIMENTADOS RESISTIVOS

Vamos a ver brevemente cuál es el comportamiento de un amplificador realimentado resistivamente. Primero vamos a analizar el comportamiento de un dispositivo semiconductor, como un transistor bipolar (usaremos un BFG520 de NXP para hacer el análisis, con parámetros S y de ruido para Vce=5V e Ic=15mA), cuya ganancia disminuye a medida que aumenta la frecuencia un orden de 6dB/oct, como se puede ver en la siguiente gráfica.

Respuesta en frecuencia de la ganancia de un transistor bipolar

Respuesta en frecuencia de la ganancia de un transistor bipolar

En la gráfica podemos ver que el valor de la ganancia en 500MHz es de 22dB, mientras que al doble (1GHz) tenemos 16,7dB, lo que implica una caída de 5,3dB en la octava. Con estas características, se plantea el circuito realimentado siguiente

Amplificador realimentado

Amplificador realimentado

cuya ganancia, para una impedancia Z0, se puede calcular usando las expresiones

Expresiones para calcular un amplificador realimentado resistivo

Expresiones para calcular un amplificador realimentado resistivo

Para el amplificador propuesto, con R1=500Ω y R2=5Ω, tenemos que Z0=50Ω y G≈17dB. Si representamos la respuesta del transistor convencional con la del realimentado

Ganancia nominal (traza azul) frente a ganancia del amplificador realimentado.

Ganancia nominal (traza azul) frente a ganancia del amplificador realimentado (traza magenta).

Si trazamos asintóticamente una línea en la traza magenta, podremos comprobar que la curva del amplificador realimentado llega a cubrir en ancho de banda hasta la frecuencia donde la ganancia del transistor convencional coincide con la del realimentado. No obstante, como el transistor tiene caída, en la frecuencia donde se corta la asíntota la caída de ganancia es de unos 3dB.

Si calculamos el factor de ruido en el transistor convencional, podemos observar que, a 600MHz, es de 1,5dB para el convencional mientras que es de 2,5dB para el realimentado. Perdemos, por tanto, 1dB de figura de ruido. Por tanto, sacrificamos el factor de ruido para obtener una ganancia prácticamente independiente de la frecuencia en una banda muy ancha.

Si calculásemos un amplificador de 11dB, el ruido subiría en el amplificador realimentado a 3,5dB. Si esto mismo lo aplicásemos a la potencia, veríamos que en nivel de salida, en el primer caso, se pierde 1,5dB de nivel de salida, mientras que en el segundo caso perdemos 2,5dB. Esto implica reducir el rango dinámico de entrada del amplificador entre 3 y 6dB, con el fin de obtener una ganancia constante entre 11 y 17dB.

LA REALIMENTACIÓN INDUCTIVA

La realimentación inductiva consiste en introducir un elemento que compare la señal de salida hacia la entrada usando una red de bajas pérdidas. Como la realimentación es negativa (se compara la señal de salida en contrafase con la señal de entrada), el mejor dispositivo para hacer esta realimentación es el acoplador direccional.

Cuando se quiere cubrir una banda muy ancha, que empiece en frecuencias muy bajas, el método para hacer acopladores direccionales es el transformador de ferrita. De ahí el nombre de inductiva, ya que usa un sistema de acoplamiento inductivo. El esquema eléctrico de un acoplador direccional a transformador es

Acoplador direccional basado en transformador de ferrita

Acoplador direccional basado en transformador de ferrita

donde la transmisión va de la puerta 1 a la 3 (o de a 2 a a 4), la puerta acoplada respecto a la puerta 1 es 2 (o 4 respecto a 3) y la puerta aislada respecto a la puerta 1 es 4 (o 3 respecto a 2). Por tanto, si ponemos la base en la puerta 3 y el colector en la 4, cuando la señal entra por la puerta 1, pasa íntegra a la 3 (entra por base y es amplificada), y parte de la señal del colector va de la puerta 4 a la puerta 3, dependiendo del factor de acoplo, y al estar en contrafase (la fase de la puerta acoplada es π rad), se compara con la señal que viene de la puerta 1, realizando la realimentación. La señal de salida va del colector a la puerta 2 íntegra.

El factor de acoplo del acoplador direccional es función del ratio entre espiras n, siendo n el número de espiras de las bobinas interiores. Se puede calcular usando

Expresión para calcular el factor de acoplo

Expresión para calcular el factor de acoplo

Para calcular un acoplador direccional de 11dB, el ratio de transformación debe ser n≈3,5.

Planteamos entonces el esquema del siguiente amplificador

Amplificador con realimentación basada en acoplador direccional

Amplificador con realimentación basada en acoplador direccional

y representamos la ganancia de este amplificador, para n=3,5

Ganancia del transistor convencional (traza azul) frente al realimentado (traza roja)

Ganancia del transistor convencional (traza azul) frente al realimentado (traza roja)

Podemos ver que trazando la línea asintótica, ocurre lo mismo que en el amplificador realimentado resistivo. Sin embargo, el ruido del amplificador se mantiene igual: si el ruido del transistor es de 1,5dB, el ruido del realimentado es también de 1,5dB, por lo que el ruido se mantiene, mientras que para una ganancia similar en el resistivo, el ruido pasaba a ser 3,5dB. En el caso del nivel de salida, se obtiene lo mismo, debido a que hay transferencia directa de energía sin pérdidas resistivas.

Por tanto, con el acoplador direccional hemos logrado un amplificador con baja ganancia sin perder el rango dinámico que tiene el transistor, lo que muestra la bondad del sistema realimentado por acoplador direccional o realimentación inductiva.

CONCLUSIONES

En esta entrada hemos repasado los amplificadores realimentados y hemos presentado la realimentación inductiva. Hemos analizado la realimentación resistiva en un transistor bipolar BFG520, y hemos hecho una comparativa con una realimentación inductiva. Hemos comprobado que la realimentación inductiva obtiene un mejor rango dinámico cuando se quieren ganancias muy bajas.

Acopladores direccionales de transformador pueden ser encontrados en varios fabricantes de componentes pasivos, o pueden ser diseñados por el propio desarrollador ya que se pueden encontrar ferritas en casi todos los catálogos.

El amplificador puede ser utilizado en etapas de entrada donde se requieran ganancias bajas, tanto por su característica de rango dinámico como por su cobertura de banda, ya que puede abarcar una banda superior a la de una realimentación resistiva.

REFERENCIAS

  1. Rowan Gilmore, Les Besser, “Practical RF Circuit Design for Modern Wireless Systems Vol. II”, Artech House Publishers, Norwood MA (USA), 2003
  2. Patente de invención industrial ES-2107351-B1, “Dispositivo ampli cador de banda ancha”, publicada por Ángel Iglesias S.A., Madrid (Spain), 1998

Introducción al cálculo de radioenlaces

images1En el mundo moderno, la conexión inalámbrica es muy habitual. El uso de dispositivos móviles se ha convertido en una de las herramientas más habituales para las comunicaciones. Pero, ¿cuál es la forma de conexión que permite que dos dispositivos estén conectados sin necesidad de hilos? La respuesta es conocida por casi todos: se trata de una conexión electromagnética, usando las propiedades del electromagnetismo para poder transferir información de un lugar a otro sin necesidad de más conexión física que la propagación electromagnética a través del aire. En esta entrada vamos a mostrar los modelos de radioenlaces más comunes y cómo se puede calcular un enlace por radio.

¿Qué es un radioenlace?

Entendemos por radioenlace a aquella conexión que se realiza entre un emisor y un receptor utilizando como medio de propagación el espacio libre.

La propagación de ondas electromagnéticas fue desarrollada por Maxwell a mediados del S. XIX, cuando unificó las teorías eléctrica y magnética en una teoría más completa, denominada teoría electromagnética, conteniendo todos los fenómenos correspondientes a los campos eléctrico y magnético formulados por Coulomb, Gauss, Lenz, Ampere, Faraday, etc.

Las ecuaciones de Maxwell, fundamentales para comprender la teoría electromagnética, son un compendio de cuatro leyes que describen el comportamiento de los campos electromagnéticos. Antes de pasar a describir el comportamiento en el espacio de un campo electromagnético, vamos a recordar dichas ecuaciones.

Ecuaciones de Maxwell

Como se ha dicho, las ecuaciones de Maxwell son un compendio de leyes formuladas sobre los campos eléctricos y magnéticos que se aúnan en cuatro ecuaciones fundamentales.

Las dos primeras provienen del Teorema de Gauss aplicado a ambos campos, que dice que las fuentes o sumideros de los campos son las magnitudes que los originan

Teorema de Gauss sobre campos eléctricos y magnéticos

Teorema de Gauss sobre campos eléctricos y magnéticos

El operador nabla es un operador diferencial de tipo vectorial, que en coordenadas generalizadas se describe por la expresión

Operador diferencial nabla

Operador diferencial nabla

Con qi, qj y qk coordenadas ortogonales entre sí, y hi, hj y hk factores de escala. El término ε se denomina permitividad eléctrica del medio y ρ es la densidad volumétrica de carga.

Usando estos términos diferenciales, estas dos ecuaciones expresan que las fuentes y sumideros de un campo eléctrico E son las cargas eléctricas, mientras que un campo magnético B no tiene fuentes o sumideros (no existe el monopolo magnético).

La tercera ecuación deriva de la ley de Faraday, que dice que un campo magnético variable con el tiempo genera una fuerza electromotriz, cuya expresión es

Ley generalizada de Lenz

Ley generalizada de Faraday

Por último, se expresa la ley generalizada de Ampere, que dice que un campo magnético B es generado por corrientes eléctricas y por un campo eléctrico variable con el tiempo

Ley generalizada de Ampere

Ley generalizada de Ampere

donde μ es la permeabilidad magnética del medio.

De estas ecuaciones se pueden deducir dos ecuaciones de onda, que son

Ecuaciones de onda para el campo eléctrico y magnético

Ecuaciones de onda para el campo eléctrico y magnético

donde σ es la conductividad eléctrica del medio. El operador diferencial usado en términos de espacio es el operador laplaciano.

Operador laplaciano

Operador laplaciano

Por tanto, en cualquier medio material lineal homogéneo se pueden propagar ondas electromagnéticas, que son resolubles usando estas ecuaciones deducidas de las ecuaciones de Maxwell. Sin embargo, no todas las soluciones a estas ecuaciones pueden dar como resultado ondas electromagnéticas. Los resultados obtenidos tienen que satisfacer también las ecuaciones de Maxwell.

Radiación electromagnética como medio de comunicación

La formulación de las ecuaciones de Maxwell permitió el desarrollo de las telecomunicaciones a larga distancia, sin uso de hilos, resolviendo el problema de las costosas infraestructuras que supondría la propagación guiada. Fueron Tesla y Marconi los primeros que experimentaron con este tipo de comunicación, que dio origen a la radiocomunicación. Un emisor, por un lado, transmitía una onda electromagnética que un receptor era capaz de recibir y reproducir y viceversa, usando como medio de trasmisión el aire.

Sin embargo, este sistema de comunicación no está exento de problemas a la hora de realizar una correcta transmisión. En el espacio libre, las ondas electromagnéticas no están guiadas, sino que se propagan, se reflejan, interfieren, se atenúan, se difractan en presencia de obstáculos… Por tanto, la conexión inalámbrica está sometida a una serie de fenómenos esenciales para poder realizar un radioenlace. La primera, y más esencial, es la que define las pérdidas en el espacio libre deducida de las ecuaciones de Maxwell.

Esquema de un radioenlace

Esquema de un radioenlace

Pérdidas en la propagación en el espacio

La primera de las pérdidas que se producen en el espacio libre (es decir, sin presencia de obstáculos ni ningún fenómeno interferente) la dedujo Friis de resolver las ecuaciones de Maxwell. Con esta expresión se puede calcular, en primera instancia, la potencia recibida por una antena en función de la potencia transmitida por el emisor. Esta ecuación depende de la frecuencia utilizada y de la distancia a la que se encuentra el receptor, y se describe por

Pérdidas de propagación en el espacio libre

Pérdidas de propagación en el espacio libre

siendo r la distancia en km y f la frecuencia en MHz.

El modelo de Friis es válido para receptores que se encuentran alejados de la antena transmisora, denominada zona de Franhoufer (no es válido para campo cercano o zona de Raileigh) y que no se encuentre con obstáculos (zona de Fresnel), ni con interferencias debidas a la reflexión de la señal (fading). Por su simplicidad, es muy útil para las primeras aproximaciones de un radioenlace, ya que éste se diseña de tal modo que la propagación de la onda sea plana a una distancia muy grande, partiendo de una onda cilíndrica en campo cercano, como por ejemplo una estación repetidora de radiotelevisión.

Sin embargo, en la mayoría de los radioenlaces modernos, sobre todo en comunicaciones móviles, se utilizan modelos más complejos, deducidos de forma estadística a partir de datos experimentales y para entornos urbanos, suburbanos y de poca densidad de población. Los modelos más utilizados en el cálculo de radioenlaces en entornos urbanos son los modelos de Okumura y Okumura-Hata.

El modelo de Okumura es el modelo más simple, aunque está limitado en la banda de frecuencias de 150MHz a 1920MHz. La expresión de las pérdidas de este modelo es

Modelo de pérdidas de Okumura

Modelo de pérdidas de Okumura

donde LF son las pérdidas en el espacio libre calculadas por el modelo de Friss y Amu es la atenuación relativa promedio. Cabe destacar que intervienen también las contribuciones de ganancia por la posición en altura de las antenas utilizadas (G(hTX) y G(hRX)) así como el ambiente en el que se encuentre (Gamb).

El modelo de Okumura es mucho más restrictivo que el de Friis, ya que en el espacio libre, una señal de 1000MHz con una distancia de 10km entre emisor y receptor muestra unas pérdidas de 112,44dB, mientras que el modelo de Okumura muestra 170-190dB, dependiendo de la altura del transmisor.

Un modelo más simple que el de Okumura es el de Okumura-Hata, que está basado en los datos de pérdidas del de Okumura, pero que simplifica el modelo para adaptarlo a un entorno urbano estándar (alturas de antenas transmisoras entre 30 y 200 m, de antenas receptoras entre 1 y 10 m y frecuencias entre 150 y 1500MHz), utilizada para el cálculo de enlaces móviles. Su expresión, en un entorno urbano, es

Modelo de pérdidas de Okumura-Hata

Modelo de pérdidas de Okumura-Hata

siendo a(hRX) un factor de corrección de la antena receptora que viene dado por una serie de expresiones, en función del entorno (urbano, suburbano y espacios abiertos)

En este caso, si tenemos una antena transmisora a 100m de altura, en un entorno urbano, y una receptora a 5m de altura, a una frecuencia de 1000MHz y 5km de distancia tendremos

Factores de corrección para ciudades pequeñas (primera) y entornos medianos y grandes (segunda)

Factores de corrección para ciudades pequeñas (primera) y entornos medianos y grandes (segunda)

Factor de corrección para entornos suburbanos y espacios abiertos

Factor de corrección para entornos suburbanos (primera) y espacios abiertos (segunda)

  • Pérdidas en el espacio libre: 106,41dB
  • Pérdidas en el modelo de Okumura: 133,50dB
  • Pérdidas en el modelo de Okumura-Hata: 133,50dB

El modelo de Okumura-Hata empieza a fallar cuando nos salimos de los valores límite para el que está definido.

Hay otros dos modelos basados en los modelos de difracción, denominados de Walfisch-Bertoni y de Walfisch-Ikegami, muy usados cuando se tratan entornos con obstáculos. Son modelos más complejos, basados en las pérdidas debidas por a la difracción de la señal, que dependen del entorno y que no se pueden formular de forma genérica. Se tratarán en una futura entrada.

El efecto de los obstáculos

Los obstáculos provocan difracción en la señal propagada. El fenómeno de la difracción es la desviación que se produce en las ondas electromagnéticas al encontrarse con un obstáculo. La difracción produce interferencias debido al cambio de caminos (cambios de fase en la onda propagada).

Ejemplo de la 1ª elipsoide de Fresnel

Ejemplo de la 1ª elipsoide de Fresnel

En un radioenlace, existe una zona de propagación más o menos segura que es la zona de Fresnel. Esta zona, que tiene forma de elipsoide es aquella en la que se asegura que la diferencia de fase entre las ondas propagadas no sea de π radianes.

Las elipsoides de Fresnel se pueden calcular en varias zonas mediante la expresión

Cálculo de las diferentes elipsoides de Fresnel

Cálculo de las diferentes elipsoides de Fresnel

Siendo rn el máximo radio de la zona en metros (n=1, 2, 3,…), d1 la distancia del emisor al obstáculo en km, d2 la distancia del receptor al obstáculo en km y f la frecuencia de la señal propagada en MHz.

Los radioenlaces se calculan generalmente en primera zona de Fresnel, por lo que la expresión queda

Cálculo para la primera zona de Fresnel

Cálculo para la primera zona de Fresnel

En el punto central tendremos el máximo de la elipsoide, por lo que podremos calcular su radio usando

Máximo radio de Fresnel para la primera zona

Máximo radio de Fresnel para la primera zona

Cálculo de un radioenlace simple

Vamos a suponer ahora que tenemos un radioenlace con un transmisor de 1kW, a 1GHz, y usamos para la transmisión una antena de ganancia 14dBi. Queremos calcular el nivel de campo que se obtiene a 10km del transmisor, en propagación en el espacio libre.

En primer lugar, se calcula la Potencia Radiada Efectiva (ERP), que es la potencia que se transmite en la dirección marcada por la antena, y que viene dada por la expresión

Cálculo de la Potencia Radiada Efectiva

Cálculo de la Potencia Radiada Efectiva

La atenuación en el espacio libre es

Pérdidas en el espacio libre del radioenlace

Pérdidas en el espacio libre del radioenlace

La intensidad de campo a esa distancia se puede calcular mediante la expresión

Cálculo de la intensidad de campo del radioenlace

Cálculo de la intensidad de campo del radioenlace

Si ahora queremos ver cuál es la potencia de la señal recibida, usando una antena de ganancia conocida (por ejemplo, una antena de 3dBd), simplemente tendremos que aplicar

Cálculo de la potencia recibida por un receptor de 50 ohm

Cálculo de la potencia recibida por un receptor de 50 ohm

que será el nivel obtenido en la recepción. El nivel recibido es de 145nW.

Conclusiones

En esta entrada hemos analizado las pérdidas de propagación de una onda electromagnética usando los diferentes modelos conocidos: el modelo de Friis, el de Okumura y el de Okumura-Hata, y hemos establecido una comparativa entre los valores que se obtienen en ambos modelos.

Para el cálculo de un radioenlace simple, donde el repetidor está muy elevado y hay pocos obstáculos, la aproximación de Friis es un modelo sencillo que nos permite calcular radioenlaces de estaciones de radio y televisión. Sin embargo, para comunicaciones móviles es más seguro usar los modelos de Okumura-Hata, debido a que incluyen una serie de parámetros que el modelo del espacio libre no incluye, observados desde los datos experimentales, y son más restrictivos a la hora de realizar el radioenlace.

Los modelos de difracción (Walfisch-Bertoni y Walfisch-Ikegami) no han sido tratados en esta entrada debido a su complejidad formal y a la necesidad de explicar también el fenómeno de la difracción. En esta entrada tampoco se han tratado fenómenos como la interferencia o el ruido, que afectan a la correcta recepción de un radioenlace. Estos modelos y los fenómenos de interferencia y ruido se tratarán en futuras entradas.

REFERENCIAS

  1. John R. Reitz, Frederick J. Milford, Robert W. Christy, “Foundations of Electromagnetic Theory”, Addison-Wesley Publishing Company, Inc., Massachusetts (USA), 1979
  2. José M. Hernando Rábanos, “Comunicaciones Móviles”, C.E. Ramón Areces, S.A., Madrid (Spain), 1997
  3. Y. Okumura, E. Ohmori, T. Kawano, K. Fukuda, “Field strength and its variability in the VHF and UHF land mobile radio service”, Rev. Elec. Commun. Lab., 16(9/10), 825-73. 1968.
  4. M. Hata, “Empirical formula for propagation loss in land mobile radio services”, IEEE Transactions on Vehicular Technology , 29(3), 317-325, 1980.