SHARENG Divulgación

Inicio » Monte Carlo

Category Archives: Monte Carlo

Análisis estadísticos usando el método de Monte Carlo (y III)

imagesCon esta entrada cerramos el capítulo dedicado al análisis de Monte Carlo. En las dos entradas anteriores vimos cómo se podía usar éste método para analizar los eventos que pueden ocurrir en un dispositivo electrónico, sino también lo que sucede cuando tenemos variables correladas y cuando sometemos al circuito a un ajuste posproducción. Estos análisis son estimables, puesto que nos permiten conocer previamente el funcionamiento de nuestro circuito y tomar decisiones acerca del diseño, elegir las topologías y componentes adecuados y realizar un primer diseño en el que se optimice al máximo el comportamiento del nuestro circuito. En esta entrada vamos a ver un ejemplo, incluyendo un factor que suele ser importante y que tampoco se suele tener en cuenta en las simulaciones, y que es el análisis térmico. En este caso, utilizaremos un amplificador de potencia diseñado para trabajar en conmutación, que alimenta a una carga. El objetivo es encontrar el componente más sensible en el amplificador y poder elegir la topología o componente adecuados para que el circuito siga funcionando en todas las condiciones definidas.

Hemos visto lo útil que puede llegar a ser el análisis de Monte Carlo para elegir topologías y componentes, e incluso para definir el ajuste que tenemos que hacer en el caso de que se produzca defectivo durante un proceso de fabricación. Este análisis reduce el tiempo de desarrollo físico, porque proporciona de antemano una información importante de cómo se va a comportar nuestro diseño, antes de montarlo y evaluarlo. No obstante, hay que llegar más allá, rizando el rizo, y añadiendo el comportamiento térmico.

Los dispositivos electrónicos están no sólo sometidos a variaciones de valores nominales, debidas a su estructura física, sino que también presentan variaciones térmicas en función de la temperatura a la que estén sometidos en su funcionamiento. Los dispositivos que más suelen sufrir estas variaciones térmicas suelen ser aquellos que disipan elevadas cantidades de potencia, como las fuentes de alimentación, los microprocesadores y los amplificadores. Las variaciones térmicas desgastan el componente y comprometen su vida útil, reduciendo su vida media cuando trabajan al límite. Si hacemos estos análisis previamente, podemos marcar las pautas para lograr el mejor funcionamiento posible y obtener un diseño que garantice una vida media suficiente.

Estudio sobre un amplificador de potencia

A continuación vamos a estudiar el efecto producido sobre un amplificador de potencia en clase E, como el de la figura.

Amplificador clase E con MOSFET

Amplificador clase E con MOSFET

Este amplificador proporciona a una carga de 6+j⋅40Ω, a 1,5MHz, una potencia de AC de 23W, con una eficiencia del 88% sobre la potencia DC entregada por la fuente de alimentación. El MOSFET, que es el elemento que más se calienta cuando está disipando la potencia de conmutación, que es del orden de 2,5W, es el elemento más crítico del sistema, ya que hay que garantizar una extracción del calor que haga que su unión no se rompa por superar la temperatura de unión. El valor máximo que puede alcanzar dicha temperatura es 175ºC, pero se establece una temperatura de seguridad de 150ºC. Por tanto, el diseño realizado debe de ser capaz de soportar cualquier variación de potencia AC que pueda superar la temperatura máxima, no sólo en condiciones normales (a temperatura ambiente de 25ºC), sino incluyendo las variaciones que se puedan producir en el consumo del dispositivo activo debido a las tolerancias de los componentes.

En este circuito, los componentes más críticos, aparte de la dispersión que presenta el propio MOSFET, son los componentes pasivos. Estos componentes forman parte de la red de adaptación, que transmite la máxima energía desde la alimentación a la carga y provocan una variación en la respuesta del drenador que influye en su consumo. Siendo potencias considerables, con valores superiores a 10W, la variación de carga provocará variaciones importantes en la potencia disipada en el MOSFET y su estudio nos mostrará las necesidades para la extracción del calor generado en el MOSFET por efecto Joule.

Análisis estadístico en condiciones normales

Lo primero que tenemos es que analizar el circuito en condiciones normales de laboratorio (25ºC, 760mmHg, 50-70% de humedad relativa) y ver las variaciones que presenta, sólo por tolerancias. Consideramos tolerancias gaussianas de ±5% en valores límite, y analizamos exclusivamente las tolerancias en estas condiciones, para un 500 eventos. De esta manera podemos ver cómo afectan los componentes a la respuesta del circuito a través de la siguiente gráfica

Potencia

Potencia de DC y potencia en la carga, frente a número de eventos

El histograma azul representa la potencia de DC suministrada por la carga, cuyo valor central máximo es de 26,4W, mientras que el histograma rojo es la potencia transferida a la carga, cuyo valor central máximo es de 23,2W. Esto representa un 87,9% de eficiencia en la entrega de potencia. La desviación estándar de la potencia de carga es ±1,6%, lo que significa una tolerancia de ±6,5% en los valores límite. Bajo estas condiciones, podemos representar la potencia disipada del MOSFET, que se puede ver en la siguiente gráfica

Potencia disipada en el MOSFET vs. número de eventos

Potencia disipada en el MOSFET, frente al número de eventos

donde obtenemos una potencia media de 2,9W y una desviación estándar de 1,2W. Esto significa que la potencia máxima puede llegar a ser del orden de 7,8W.

Si calculamos con estos valores la diferencia entre la temperatura de la unión y la ambiente, teniendo en cuenta que las resistencias térmicas Rth-JC=1,7K/W y Rth-CH=0,7K/W, y usando un disipador con una resistencia térmica en condiciones de ventilación no forzada de Rth-HA=10K/W, se puede obtener, para una Tamb=25ºC

temp

Por tanto, a 25ºC, con una refrigeración no forzada, la temperatura de la unión está a 118,95ºC en el valor límite de potencia consumida por el MOSFET, proporcionándonos un margen suficiente sobre los 150ºC máximos a los que la unión se rompe.

Análisis estadístico para tres temperaturas

El análisis anterior nos garantiza un correcto funcionamiento en condiciones normales, pero, ¿qué ocurre cuando subimos o bajamos la temperatura? Vamos a analizar bajo tres condiciones de temperatura: 0ºC, 25ºC y 50ºC, y para representarlo usaremos un histograma multidimensional, en el que agruparemos todos los eventos sin discernir temperaturas. De este modo obtenemos

Potencia de DC y potencia en la carga, frente a número de eventos y temperatura

Potencia de DC y potencia en la carga, frente a número de eventos y temperatura

donde la potencia media entregada a la carga, en todas las condiciones, es 22,6W, para todas las condiciones térmicas, y la eficiencia media es del 86,6%, cubriendo el rango de temperaturas entre 0ºC y 50ºC.

Analizando ahora la potencia disipada por el MOSFET, en las mismas condiciones

temp_mos_power

Potencia disipada en el MOSFET, frente al número de eventos y la temperatura

donde calculando el valor medio, se obtiene 2,9W, con un máximo de 7,8W. Estos valores, similares al calculado anteriormente, muestran que la máxima temperatura de la unión va a ser 143,95ºC, a 7ºC de la temperatura máxima de seguridad de 150ºC, y por tanto a 32ºC de la temperatura máxima de la unión.

Por tanto, podemos concluir del análisis que el circuito diseñado, bajo las condiciones de temperatura ambiente de 0ºC a 50ºC, y siempre con un disipador con una resistencia térmica en ventilación no forzada de Rth-HA=10K/W, presentará un funcionamiento óptimo para el rango de potencia de carga.

CONCLUSIÓN

Con esta entrada finalizamos el capítulo dedicado al análisis usando el método de Monte Carlo. Con los análisis realizados, hemos cubierto la optimización de características a través de diferentes topologías, el ajuste posproducción en un proceso de montaje industrial y el análisis térmico para comprobar los límites de seguridad en los que trabaja un circuito de potencia. No obstante, el método proporciona muchas más posibilidades que se pueden explorar a partir de estos sencillos experimentos.

REFERENCIAS

  1. Castillo Ron, Enrique, “Introducción a la Estadística Aplicada”, Santander, NORAY, 1978, ISBN 84-300-0021-6.
  2. Peña Sánchez de Rivera, Daniel, “Fundamentos de Estadística”, Madrid,  Alianza Editorial, 2001, ISBN 84-206-8696-4.
  3. Kroese, Dirk P., y otros, “Why the Monte Carlo method is so important today”, 2014, WIREs Comp Stat, Vol. 6, págs. 386-392, DOI: 10.1002/wics.1314.

Statistical analysis using Monte Carlo method (II)

Art02_fig01

In the previous post, some single examples of the Monte Carlo method were shown. In this post it will be deeply analyzed, making a statistical analysis on a more complex system, analyzing its output variables and studying the results so that they will be quite useful. The advantage of simulation is that it is possible to get a random generation of variables, and also a correlation between variables can be set, achieving different effects in the analysis of the system performance. Thus, any system not only can be analyzed statistically using a random generation of variables, but also this random generation can be linked in a batch analysis or failures in production and in a post-production recovery.

The circuits studied in the previous post were very simple circuits, allowing to see the allocation of random variables and their results when these random variables are integrated a more complex system. With this analysis, it is possible to check the performance and propose corrections which would limit statistically the variations in the final system.

In this case, the dispersive effect of the tolerances will be studied on one of the circuits where it is very difficult to achieve an stability in its features: an electronic filter. An electronic filter, passband type, will be designed and tuned to a fixed frequency, with a certain bandwidth in passband and stopband, and several statistical analysis will be done on it, to check its response with the device tolerances.

DESIGN OF THE BANDPASS FILTER

A bandpass filter design is done, with a 37,5MHz center frequency, 7MHz pass bandwidth (return losses ≥14dB) and a 19MHz stopband bandwidth (stopband attenuation >20dB). When the filter is calculating, three sections are got, and its schematic is

Filtro paso banda de tres secciones

3-sections bandpass filter

With the calculated values of the components, standard values which can make the filter transfer function are found, and its frequency response is

Respuesta en frecuencia del filtro paso banda

Bandpass filter frequency response

where it is possible to check that the center frequency is 37.5 MHz, the return losses are lower than 14dB at ± 3.5Mhz of the center frequency, and the stopband width is 18,8MHz, with 8,5MHz from the left of the center frequency and 10,3MHz to the right of the center frequency.
Then, once the filter is designed, a first statistical analysis is done, considering that the capacitor tolerance is ± 5% and the inductors are adjustable. In addition, there is not any correlation between the random variables, being able to take an random value independently.

STATISTICAL ANALYSIS OF THE FILTER WITHOUT CORRELATION BETWEEN VARIABLES

As it could be seen in the previous post, when there are random variables there is an output dispersion, so limits to consider a valid filter must be defined, from these limits, to analyze its valid frequency response. Yield analysis is used. This is an analysis using the Monte Carlo algorithm that it allows  to check the performance or effectiveness of the design. To perform this analysis, the limits-for-validation specifications must be defined. The chosen specifications are return losses >13,5dB at 35÷40MHz, with a 2 MHzreduction in the passband width and an attenuation >20dB at frequencies ≤29MHz and ≥48MHz. By statistical analysis, it is got

Análisis estadístico del filtro. Variables sin correlación.

Statistical analysis of the filter . Variables without correlation.

whose response is bad: only 60% of possible filters generated by variables with a ±5% tolerance could be considered valid. The rest would not be considered valid by a quality control, which would mean that 40% defective material should be returned to the production, to be reprocessed.

It can be checked in the graph that the return loss are the primarily responsible for this bad performance. What could it be done to improve it? In this case, there are 4 random variables. However, two capacitors have of the same value (15pF), and when they are assembled in a production process, usually belong to the same manufacturing batch. If these variables show no correlation, variables can take completely different values. When they are not correlated, the following chart is got

Condensadores C1 y C3 sin correlación

C1, C3 without correlation

However, when these assembled components belong to the same manufacturing batch, their tolerances vary always to the same direction, therefore there is correlation between these variables.

STATISTICAL ANALYSIS OF THE FILTER WITH CORRELATION BETWEEN VARIABLES

When the correlation is used, the influence of tolerances is decreased. In this case, it is not a totally random process, but manufacturing batches in which the variations happen. In this case, it is possible to put a correlation between the variables C1 and C3, which have the same nominal value and belong the same manufacturing batch, so now the correlation graph is

Condensadores C1 y C3 con correlación

C1, C3 with correlation

where the variation trend in each batch is the same. Then, putting a correlation between the two variables allows studying the effective performance of the filter and get

Análisis estadístico con C1, C2 variables correladas

Statistical analysis with correlation in C1, C3

that it seems even worse. But what happens really? It must be taken into account that the variable correlation has allowed analyzing complete batches, while in the previous analysis was not possible to discern the batches. Therefore, 26 successful complete manufacturing processes have been got, compared to the previous case that it was not possible to discern anything. Then, this shows that from 50 complete manufacturing processes, 26 processes would be successful.

However, 24 complete processes would have to be returned to production with the whole lot. And it remains really a bad result. But there is a solution: the post-production adjustment.

STATISTICAL ANALYSIS WITH POST-PRODUCTION ADJUSTMENT

As it was said, at this point the response seems very bad, but remembering that the inductors had set adjustable. What happens now? Doing a new analysis, allowing at these variable to take values in ±10% over the nominal value, and setting the post-production optimization in the Monte Carlo analysis and voilà! Even with a very high defective value, it is possible to recover 96% of the filters within the valid values.

Análisis estadístico con ajuste post-producción

Statistical analysis with post-production optimization

So an improvement is got, because the analysis is showing that it is possible to recover almost all of the batches with the post-production adjustment, so this analysis allows showing not only the defective value but also the recovery posibilities.
It is possible to represent the variations of the inductors (in this case corresponding to the serial resonances) to analyze what is the sensitivity of the circuit to the more critical changes. This analysis allows to set an adjustment pattern to reduce the adjustment time that it should have the filter.

Análisis de los patrones de ajuste en las inducciones de las resonancias serie

Analysis of the adjustment patterns of the serial resonance inductors

So, with this analysis, done at the same time design, it is possible to take decisions which set the patterns of manufacturing of the products and setting the adjustment patterns for the post-production, knowing previously the statistic response of the designed filter. This analysis is a very important resource before to validate any design.

CONCLUSIONS

In this post, a more grade in the possibilities of using Monte Carlo statistical analysis is shown, using statistical studies. The algorithm provides optimal results and allows setting conditions for various analysis and optimizing more the design. Doing a post-production adjustment, it is possible to get the recovery grade of the proposed design. In the next post, another example of the Monte Carlo method will be done that allows seeing more possibilities over the algorithm.

REFERENCES

  1. Castillo Ron, Enrique, “Introducción a la Estadística Aplicada”, Santander, NORAY, 1978, ISBN 84-300-0021-6.
  2. Peña Sánchez de Rivera, Daniel, “Fundamentos de Estadística”, Madrid,  Alianza Editorial, 2001, ISBN 84-206-8696-4.
  3. Kroese, Dirk P., y otros, “Why the Monte Carlo method is so important today”, 2014, WIREs Comp Stat, Vol. 6, págs. 386-392, DOI: 10.1002/wics.1314.

Análisis estadísticos usando el método de Monte Carlo (II)

Art02_fig01En la anterior entrada mostramos con una serie de ejemplos simples cómo funciona el método de Monte Carlo para realizar análisis estadísticos. En esta entrada vamos a profundizar un poco más, haciendo un análisis estadístico más profundo sobre un sistema algo más complejo, analizando una serie de variables de salida y estudiando sus resultados desde una serie de ópticas que resultarán bastante útiles. La ventaja que tiene la simulación es que podemos realizar una generación aleatoria de variables, y además, podemos establecer una correlación de esas variables para conseguir distintos efectos al analizar el funcionamiento de un sistema. Así, cualquier sistema no sólo se puede analizar estadísticamente mediante una generación aleatoria de entradas, sino que podemos vincular esa generación aleatoria a análisis de lotes o fallos en la producción, así como su recuperación post-producción.

Los circuitos que vimos en la anterior entrada eran circuitos muy sencillos que permitían ver cómo funciona la asignación de variables aleatorias y el resultado obtenido cuando estas variables aleatorias forman parte de un sistema más complejo. Con este análisis, podíamos comprobar un funcionamiento y hasta proponer correcciones que, por sí solas, limitasen las variaciones estadísticas del sistema final.

En este caso, vamos a estudiar el efecto dispersivo que tienen las tolerancias sobre uno de los circuitos más difíciles de conseguir su funcionamiento de forma estable: el filtro electrónico. Partiremos de un filtro electrónico de tipo paso banda, sintonizado a una determinada frecuencia y con una anchura de banda de paso y rechazo determinadas, y realizaremos varios análisis estadísticos sobre el mismo, para comprobar su respuesta cuando se somete a las tolerancias de los componentes.

DISEÑO DEL FILTRO PASO BANDA

Vamos a plantear el diseño de un filtro paso banda, centrado a una frecuencia de 37,5MHz, con un ancho de banda de 7MHz para unas pérdidas de retorno mayores que 14dB, y un ancho de banda de rechazo de 19MHz, con atenuación mayor de 20dB. Calculando el filtro, se obtienen 3 secciones, con el siguiente esquema

Filtro paso banda de tres secciones

Filtro paso banda de tres secciones

Con los valores de componentes calculados, se buscan valores estándar que puedan hacer la función de transferencia de este filtro, cuya respuesta es

Respuesta en frecuencia del filtro paso banda

Respuesta en frecuencia del filtro paso banda

donde podemos ver que la frecuencia central es 37,5MHz, que las pérdidas de retorno están por debajo de 14dB en ±3,5MHz de la frecuencia central y que el ancho de banda de rechazo es de 18,8MHz, con 8,5MHz a la izquierda de la frecuencia central y 10,3MHz a la derecha de la frecuencia central.

Bien, ya tenemos diseñado nuestro filtro, y ahora vamos a hacer un primer análisis estadístico, considerando que las tolerancias de los condensadores son ±5%, y que las inducciones son ajustables. Además, no vamos a indicar correlación en ninguna variable, pudiendo tomar cada variable un valor aleatorio independiente de la otra.

ANÁLISIS ESTADÍSTICO DEL FILTRO SIN CORRELACIÓN ENTRE VARIABLES

Como vimos en la entrada anterior, cuando tenemos variables aleatorias vamos a tener dispersión en la salida, así que lo óptimo es poner unos límites según los cuales podremos considerar el filtro válido, y a partir de ahí analizar cuál es su respuesta. Para ello se recurre al análisis YIELD, que es un análisis que, usando el algoritmo de Monte Carlo, nos permite comprobar el rendimiento o efectividad de nuestro diseño. Para realizar este análisis hay que incluir las especificaciones según las cuales se puede dar el filtro por válido. Las especificaciones elegidas son unas pérdidas de retorno superiores a 13,5dB entre 35÷40MHz, con una reducción de 2MHz en la anchura de banda, y una atenuación mayor de 20dB por debajo de 29MHz y por encima de 48MHz. Haciendo el análisis estadístico obtenemos

Análisis estadístico del filtro. Variables sin correlación.

Análisis estadístico del filtro. Variables sin correlación.

que, sinceramente, es un desastre: sólo el 60% de los posibles filtros generados por variables con un ±5% de tolerancia podrían considerarse filtros válidos. El resto no serían considerados como válidos en un control de calidad, lo que significaría un 40% de material defectivo que se devolvería al proceso de producción.

De la gráfica se puede ver, además, que son las pérdidas de retorno las principales responsables de que exista tan bajo rendimiento. ¿Qué podemos hacer para mejorar este valor? En este caso, tenemos cuatro variables aleatorias. Sin embargo, dos de ellas son del mismo valor (15pF), que cuando son montadas en un proceso productivo, suelen pertenecer al mismo lote de fabricación. Si estas variables no presentan ninguna correlación, las variables pueden tomar valores completamente dispares. Cuando las variables no presentan correlación, tendremos la siguiente gráfica

Condensadores C1 y C3 sin correlación

Condensadores C1 y C3 sin correlación

Sin embargo, cuando se están montando componentes de un mismo lote de fabricación, las tolerancias que presentan los componentes varían siempre hacia el mismo sitio, por tanto hay correlación entre dichas variables.

ANÁLISIS ESTADÍSTICO DEL FILTRO CON CORRELACIÓN ENTRE VARIABLES

Cuando usamos la correlación entre variables, estamos reduciendo el entorno de variación. En este caso, lo que analizamos no es un proceso totalmente aleatorio, sino lotes de fabricación en los cuales se producen las variaciones. En este caso, hemos establecido la correlación entre las variables C1 y C3, que son del mismo valor nominal y que pertenecen la mismo lote de fabricación, por lo que ahora tendremos

Condensadores C1 y C3 con correlación

Condensadores C1 y C3 con correlación

donde podemos ver que la tendencia a la variación en cada lote es la misma. Estableciendo entonces la correlación entre ambas variables, estudiamos el rendimiento efectivo de nuestro filtro y obtenemos

Análisis estadístico con C1, C2 variables correladas

Análisis estadístico con C1, C2 variables correladas

que parece todavía más desastroso. Pero ¿es así? Tenemos que tener en cuenta que la correlación entre variables nos ha permitido analizar lotes completos de fabricación, mientras que en el análisis anterior no se podía discernir los lotes. Por tanto, lo que aquí hemos obtenido son 26 procesos de fabricación completos exitosos, frente al caso anterior que no permitía discernir nada. Por tanto, esto lo que nos muestra es que de 50 procesos completos de fabricación, obtendríamos que 26 procesos serían exitosos.

Sin embargo, 24 procesos completos tendrían que ser devueltos a la producción con todo el lote. Lo que sigue siendo, realmente, un desastre y el Director de Producción estaría echando humo. Pero vamos a darle una alegría y a justificar lo que ha intentado siempre que no exista: el ajuste post-producción.

ANÁLISIS ESTADÍSTICO CON AJUSTE POST-PRODUCCIÓN

Como ya he dicho, a estas alturas el Director de Producción está pensando en descuartizarte poco a poco, sin embargo, queda un as en la manga, recordando que las inducciones las hemos puesto de modo que sean ajustables. ¿Tendrá esto éxito? Para ello hacemos un nuevo análisis, dando valores variables en un entorno de ±10% sobre los valores nominales, y activamos el proceso de ajuste post-producción en el análisis y ¡voilà! Aun teniendo un defectivo antes del ajuste muy elevado, logramos recuperar el 96% de los filtros dentro de los valores que se habían elegido como válidos

Análisis estadístico con ajuste post-producción

Análisis estadístico con ajuste post-producción

Bueno, hemos ganado que el Director de Producción no nos corte en cachitos, ya que el proceso nos está indicando que podemos recuperar la práctica totalidad de los lotes, eso sí, con el ajuste, por lo que con este análisis podemos mostrar no sólo el defectivo sino la capacidad de recuperación del mismo.

Podemos representar cómo han variado las inducciones (en este caso las correspondientes a las resonancias en serie) para poder analizar cuál es la sensibilidad del circuito frente a las variaciones más críticas. Este análisis permite establecer un patrón de ajuste para reducir el tiempo en el que se debe de tener un filtro exitoso.

Análisis de los patrones de ajuste en las inducciones de las resonancias serie

Análisis de los patrones de ajuste en las inducciones de las resonancias serie

Así, con este tipo de análisis, realizado en el mismo momento del diseño, es posible tomar decisiones que fijen los patrones posteriores de la fabricación de los equipos y sistemas, pudiendo establecer patrones fijos de ajuste post-producción sencillos al conocer de antemano la respuesta estadística del filtro diseñado. Una cosa muy clara que he tenido siempre, es que cuando no he hecho este análisis, el resultado es tan desastroso como muestra la estadística, así que mi recomendación como diseñador es dedicarle tiempo a aprender cómo funciona y hacerle antes de que le digas a Producción que tu diseño está acabado.

CONCLUSIONES

En esta entrada hemos querido mostrar un paso más en las posibilidades del análisis estadístico usando Monte Carlo, avanzando en las posibilidades que muestra el método a la hora de hacer estudios estadísticos. El algoritmo nos proporciona resultados y nos permite fijar condicionantes para realizar diversos análisis y poder optimizar más si se puede cualquier sistema. Hemos acudido hasta a un ajuste post-producción, a fin de calmar la ira de nuestro Director de Producción, que ya estaba echando humo con el defectivo que le estábamos proporcionando. En la siguiente entrada, abundaremos un poco más en el método con otro ejemplo que nos permita ver más posibilidades en el algoritmo.

REFERENCIAS

  1. Castillo Ron, Enrique, “Introducción a la Estadística Aplicada”, Santander, NORAY, 1978, ISBN 84-300-0021-6.
  2. Peña Sánchez de Rivera, Daniel, “Fundamentos de Estadística”, Madrid,  Alianza Editorial, 2001, ISBN 84-206-8696-4.
  3. Kroese, Dirk P., y otros, “Why the Monte Carlo method is so important today”, 2014, WIREs Comp Stat, Vol. 6, págs. 386-392, DOI: 10.1002/wics.1314.

 

Statistical analysis using Monte Carlo method (I)

imagesWhen any electronic device is designed, we can use several deterministic methods for calculating its main parameters. So, we can get the parameters that we measure physically in any device or system. These preliminary calculations allow the development and their results are usually agreed with the prediction. However, we know that everything we manufacture is always subject to tolerances. And these tolerances cause variations in the results that often can not be analyzed easily, without a powerful calculation application. In 1944, Newmann and Ulam developed a non-deterministic, statistical method called Monte Carlo. In the following blog post.  we are going to analyze the use of this powerful method for predicting possible tolerances in circuits, especially when they are manufactured industrially.

In any process, the output result is a function of the input variables. These variables generate a response which can be determined, both if the system is linear and if it is not linear. The relationship between the response and the input variables is called transfer function, and its knowledge allows us to get any result concerning the input excitation.

However, it must be taken in account that the input variables are random variables, with their own distribution function, and are subject to stochastic processes, although their behavior is predictable through the Theory of Probability. For example, when we make any measure, we get its average value and the error in which can be measured that magnitude. This allows to limit the environment in which it is correct and decide when the magnitude behaves incorrectly.

For many years, I have learned to successfully transform the results obtained by simulations in real physical results, with predictable behavior and I got valid conclusions, and I have noticed that in most cases the use of the simulation is reduced to get the desired result without studying the dependence of the variables in that result. However, most simulators have very useful statistical algorithms that, properly used, allow to get a series of data that the designer can use in the future, predicting any system behavior, or at least analyzing what it can happen.

However, these methods are not usually used. Either for knowledge lack of statistical patterns, or for ignorance of how these patterns can be used. Therefore, in these posts we shall analyze the Monte Carlo method on circuit simulations and we shall discover an important tool which is unknown to many simulator users.

DEVICES LIKE RANDOM VARIABLES

Electronic circuits are made by simple electronic devices, but they have a statistical behavior due to manufacturing. Device manufacturers usually show their nominal values and tolerances. Thus, a resistance manufacturer not only publishes its rating values and its dimensions. Tolerances, stress, temperature dependance, etc., are also published. These parameters provide important information, and propertly analyzed with a powerful calculation tool (such as a simulator), we can predict the behavior of any complex circuit.

In this post, we are going to analyze exclusively the error environment around the nominal value, in one resistor. In any resistor, the manufacturer defines its nominal value and its tolerance. We asume these values 1kΩ for the nominal value and ± 5% for its tolerance. It means the resistance value can be found between 950Ω and 1,05kΩ. In the case of a bipolar transistor, the current gain β could take a value between 100 and 600 (i.e. NXP BC817), which may be an important and uncontrollable variation of current collector. Therefore, knowing these data, we can analyze the statistical behavior of an electronic circuit through the Monte Carlo method.

First, let us look resistance: we have said that the resistance has a ± 5% tolerance. Then, we will analyze the resistor behavior with the Monte Carlo method, using a circuit simulator. A priori, we do not know the probability function, although most common is a Gaussian function, whose expression is well known

normal

being μ the mean and σ² the variance. Analyzing by the simulator, through Monte Carlo method and with 2000 samples, we can get a histogram of resistance value, like it is shown in the next figure

Distribución de los valores de la resistencia usando el análisis de Monte Carlo

Histogram of the resistor

Monte Carlo algorithm introduces a variable whose value corresponds to a Gaussian distribution, but the values it takes are random. If these 2000 samples were taken in five different processes with 400 samples each one, we would still find a Gaussian tendency, but their distribution would be different

Distribuciones gaussianas con varios lotes

Gaussian distributions with different processes

Therefore, working properly with the random variables, we can get a complete study of the feasibility of any design and the sensitivity that each variable shows. In the next example, we are going to analyze the bias point of a bipolar transistor, whose β variation is between 100 and 600, being the average value 350 (β is considered a Gaussian distribution), feeding it with resistors with a nominal tolerance of ± 5% and studying the collector current variation using 100 samples.

STATISTICAL ANALYSIS OF A BJT BEHAVIOR IN DC

Now, we are going to study the behavior of a bias circuit, with a bipolar transistor, like the next figure

Circuito de polarización de un BJT

Bias point circuit of a BJT

where the resistors have a ±5% tolerance and the transistor has a β variation between 100 and 600, with a nominal value of 350. Its bias point is  Ic=1,8mA, Vce=3,2V. Making a Monte Carlo analysis, with 100 samples, we can get the next result

Variación de la corriente del BJT en función de las variables aleatorias

BJT current distribution respect to the random variables

 

Seeing the graph form, we can check that the result converges to a Gaussian distribution, being the average value Ic=1,8mA and its tolerance, ±28%. Suppose now that we do the same sweep before processing, in several batches of 100 samples each one. The obtained result is

Variación de la corriente del BJT para varios lotes

BJT current distribution respect several batches

where we can see that in each batch we get a graph which converges to a Gaussian distribution. In this case, the Gaussian distribution has an average value μ=1,8mA and a variance σ²=7%. Thus, we have been able to analyze each process not only like a global statistical analysis but also like a batch. Suppose now that β is a random variable with an uniform distribution function, between 100 and 600. By analyzing only 100 samples, the next graphic is got

Distribución con b uniforme

Results with a BETA uniform distribution

and it can be seen that the current converges to an uniform distribution, increasing the current tolerance range and the probability at the ends. Therefore, we can also study the circuit behaviour when it shows different distribution functions for each variable.

Seeing that, with the Monte Carlo method, we are able to analyze any complex circuit behavior in terms of tolerances, in the same way it will help us to study how we could correct those results. Therefore, in the next posts we shall analyzed deeply this method, increasing the study of its potential and what we can be achieved with it.

CORRECTING THE TOLERANCES

In the simulated circuit, when we have characterized the transistor β like an uniform random variable, we have increased the probability into unwanted current values (at the ends). This is one of the most problematic features, not only on bipolar transistors but also on field effect transistor: the variations of their current ratios. This simple example let see what happens when we use a typical correction circuit for the β variation, like the classic polarization by emitter resistance.

Bias circuit by emitter resistance

Using this circuit and analyzing by Monte Carlo, we can compare its results with the analysis obtained in the previous case, but using 1000 samples. The result is

Resultados con ambos circuitos

Results with both circuits

where we can check that the probability values have increased around 2mA, reducing the probability density at the low values of current and narrowing the distribution function. Therefore, the Monte Carlo method is a method that not only enables us to analyze the behavior of a circuit when subjected to a statistical, but also allow us to optimize our circuit and adjust it to the desired limit values. Used properly, it is a powerful calculation tool that will improve the knowledge of our circuits.

CONCLUSIONS

In this first post, we wish to begin a serie dedicated to Monte Carlo method. In it, we wanted to show the method and its usefulness. As we have seen in the examples, the use of Monte Carlo method provides very useful data, especially with the limitations and variations of the circuit we are analyzing if we know how they are characterized. On the other hand, it allows us to improve it using statistical studies, in addition to setting the standards for the verification of in any production process.

In the next posts we shall go more in depth on the method, by performing a more comprehensive method through the study of a specific circuit of one of my most recent projects, analyzing what the expected results and the different simulations that can be performed using the method of Monte Carlo, like the worst case, the sensitivity, and the post-production optimization.

REFERENCES

  1. Castillo Ron, Enrique, “Introducción a la Estadística Aplicada”, Santander, NORAY, 1978, ISBN 84-300-0021-6.
  2. Peña Sánchez de Rivera, Daniel, “Fundamentos de Estadística”, Madrid,  Alianza Editorial, 2001, ISBN 84-206-8696-4.
  3. Kroese, Dirk P., y otros, “Why the Monte Carlo method is so important today”, 2014, WIREs Comp Stat, Vol. 6, págs. 386-392, DOI: 10.1002/wics.1314.