Archivo de la categoría: Circuitos

Estudio del comportamiento de un material piezoeléctrico (II)

En la entrada anterior habíamos estudiado el fenómeno piezoeléctrico a partir de las ecuaciones constitutivas que relacionan los campos eléctricos y mecánicos generados en el material. Los materiales piezoeléctricos se utilizan, gracias a este comportamiento, como componentes electrónicos con muy alta calidad. Su uso en filtros SAW, en resonadores BAW, en cristales de Cuarzo, para zumbadores e incluso como cargadores en Energy Harvesting hacen necesario, cada vez más, tener un modelo de circuito equivalente que defina correctamente el componente y su respuesta electroacústica. En esta entrada vamos a presentar un modelo, extraído en los años 40-50 por W.P. Mason y que sintetiza con bastante precisión los fenómenos electroacústicos tanto en su modelo lineal como no lineal.

MODELO DE MASON: EXTRACCIÓN

piezoelectrico

Esquema de un piezoeléctrico

Hemos dicho que un piezoeléctrico es un material electromecánico en el que aparecen fuerzas mecánicas cuando se le aplican fuerzas eléctricas y, recíprocamente, eléctricas cuando se aplican fuerzas mecánicas. La figura muestra un esquema dimensional de un material piezoeléctrico.

En el piezoeléctrico aplicamos un potencial eléctrico E⋅δz, y en ambas superficies del piezoeléctrico aparecen sendas tensiones T1 y T2, en cada una de las superficies del material. Aparecen también las velocidades de desplazamiento v1 y v2, que están relacionadas con el desplazamiento u a través de

velci

Por último, aparece una corriente eléctrica I en los electrodos del potencial eléctrico. Por último, las magnitudes de A y d son la superficie en m2 y el espesor del dieléctrico en m.

En la entrada anterior estudiamos el comportamiento piezoeléctrico a partir de sus ecuaciones constitutivas. Recordando entonces cómo se escribían estas ecuaciones, teníamos

consti

Se tiene que cumplir, además, la conservación de la energía a través de la ecuación de Lipmann

condi_campo

Combinando adecuadamente estas ecuaciones, habíamos obtenido una ecuación de onda definida por

onda2que corresponde a una onda de propagación.

Utilizando la expresión que liga v con la variación temporal de u, podemos escribir la 2ª Ley de Newton como

second_newton

Recordando, además, que la deformación S derivaba del gradiente de u, calculamos la variación de S con respecto al tiempo y obtenemos su relación con el gradiente de v. Expresándolo para un sistema unidimensional en el eje z, obtenemos

deforma_time

y despejando S de las ecuaciones constitutivas, obtenemos

segunda

Escalamos ahora las ecuaciones, multiplicando por A  los términos de ambas ecuaciones, y agrupándolas, obtenemos

telegraph

Si comparamos este resultado con las ecuaciones del Telegrafista que define una línea de transmisión para las ondas electromagnéticas, podemos comprobar que son similares. La primera relaciona la variación espacial de la tensión -A·T con la variación temporal de la corriente A·v, y correspondería a una inducción por unidad de longitud similar a la de un elemento diferencial de una línea de transmisión.

En la segunda ecuación, que relaciona la variación espacial de la corriente A·v, con respecto a una variación temporal de una tensión, representa una capacidad por unidad de longitud similar a la de la línea de transmisión. Sin embargo, en el segundo término de la ecuación, tenemos una dependencia con la tensión -A·T, que sería una línea de transmisión convencional, y otra dependencia con el desplazamiento eléctrico D. Esa dependencia se representa mediante una línea de transmisión flotante como la que se muestra en la figura siguiente.

linea_t

Modelo acústico del piezoeléctrico, en línea de transmisión, a partir de las ecuaciones del Telegrafista

De este modo ya tenemos asemejada la parte acústica a una línea de transmisión definida por los campos que actúan en las ecuaciones constitutivas.

Sin embargo, esta línea no está del todo completa, ya que hay que incluir el efecto de los electrodos, aislando los campos acústicos de los campos eléctricos. El término que relaciona la variación espacial de A·v con el desplazamiento D puede ser acoplado a través de un transformador ideal N:1, como se muestra en la figura

Acoplamiento de la parte acústica y la eléctrica mediante un transformador N:1

Acoplamiento de la parte acústica y la eléctrica mediante un transformador N:1

y la relación de N se puede calcular por

trafo_ratio

Vamos ahora a estudiar la corriente I. Esta corriente se produce cuando se aplica una tensión E⋅δz en los electrodos del piezoeléctrico. Al aplicar esa tensión, generamos una polarización P, debido al carácter dieléctrico del material. Del mismo modo, sabemos que la corriente I es una variación de la carga Q, y que sólo se producía variación de la carga superficial σ del piezoeléctrico, y que ésta es debida a la polarización P, no variando la carga volumétrica, por lo que

current_in

y como a la polarización P se opone el desplazamiento eléctrico D para mantener el campo electrico E, obtenemos que

current_desplaza

Estudiamos ahora el potencial E⋅δz aplicado en los electrodos. Usando las ecuaciones constitutivas, obtenemos que el potencial es

in_pote

Derivando esta expresión con respecto al tiempo, obtenemos

in_pote3

Estudiemos ahora los términos en δV1 y  δV2. En el término en δV1 podemos obtener la expresión

current_cap

y es la corriente que fluye a través de un condensador de valor CO , en paralelo con la tensión aplicada. Mientras, el término en δV2 se puede relacionar con la corriente que circula en la parte acústica a través de transformador, siendo Iprim la corriente que circula por el devanado primario del transformador. Usando las relaciones del transformador, podemos encontrar la relación de dicha corriente con esta tensión a través de

current_prim

Tenemos que hacer la consideración de que el peso de la tensión δV1>>δV2 , ya que al calcular la relación de transformación en el transformador hemos supuesto que es E⋅δz=δV, por lo que δV1δVδV20. De este modo, la corriente del primario es una corriente que circula a través de una capacidad negativa de valor CO.

Usando estos parámetros, deducidos de las ecuaciones constitutivas, es posible hacer un modelo completo del circuito equivalente de un piezoeléctrico, que se puede ver en la figura siguiente

mason_model

Circuito equivalente de Mason de un piezoeléctrico

CONDICIONES DE CONTORNO

Cualquier medio material está dentro de otros medios materiales (aire, agua, substratos semiconductores, metales, etc), y todos los medios materiales propagan ondas acústicas. Por tanto, así como en electromagnetismo definimos una impedancia de carga eléctrica sobre la que se transfiere la energía entregada desde el generador eléctrico, podemos definir una resistencia de carga acústica, que es donde se transfiere la energía acústica de la deformación. Esta resistencia de carga acústica está relacionada con la impedancia acústica del medio, y se transforma en una resistencia eléctrica a través de la expresión

acustic_resis

Por ejemplo, el aire tiene una impedancia acústica de 471 Rayls, así que para un piezoeléctrico AlN, con una superficie de 10.000μm2, si ambas superficies estuviesen en contacto con el aire, las impedancias de carga a conectar en los puertos A·T1 y A·T2 serían iguales y valdrían 4,71μΩ, lo que vendría a ser como colocar un cortocircuito en ambos puertos.

En el caso de que uno de los medios fuese aire y el otro, silicio, el silicio tiene una impedancia acústica de 8,35·105 Rayls, en el puerto del silicio habría que poner 8,35mΩ.

Hay que notar que, aunque la impedancia obtenida sea baja. no es estrictamente un cortocircuito. De hecho, al aire, que es el que más baja impedancia presenta, es al que consideramos un cortocircuito, mientras que el resto de materiales presentan impedancias acústicas más elevadas.

También es posible que tengamos un material compuesto de varios espesores de materiales, siendo uno de ellos piezoeléctrico, mientras que los demás son conductores o aislantes. Cuando esto ocurre, cada material puede ser representado por una línea de transmisión de igual modo que el piezoeléctrico. Por ejemplo, si el piezoeléctrico está encapsulado entre dos materiales diferentes, como el wolframio (W) y el molibdeno (Mo), y el wolframio está en contacto con el aire y el molibdeno con silicio, habría que añadir sendas líneas de transmisión entre las cargas y el piezoeléctrico, como se muestra en la figura siguiente

piezo_total

 

NO LINEALIDAD EN LOS MATERIALES: EL MODELO NO LINEAL DE MASON

En las condiciones de trabajo habituales de los piezoeléctricos, el funcionamiento debe de ser lineal. Sin embargo, los materiales presentan limitaciones que hay que tener en cuenta a la hora de trabajar con tensiones elevadas. Estas no linealidades introducen frecuencias espurias que reducen la calidad de la señal. Si estamos usando estos materiales en filtros de recepción, las no linealidades pueden representar un problema cuando una señal interferente de valor elevado atraviesa el material.

El piezoeléctrico es un resonador de muy alto factor de calidad. Traducido a parámetros discretos, se comporta como el circuito de la figura

Resonador equivalente de un piezoeléctrico

Resonador equivalente de un piezoeléctrico

La impedancia del resonador se puede representar en función de la frecuencia, obteniendo una gráfica similar a

impedancia

Impedancia del resonador en función de la frecuencia

El modelo, para bajos potenciales eléctricos, responderá correctamente de forma lineal. Sin embargo, a medida que aumentamos el valor del potencial eléctrico aplicado, empiezan a aparecer condiciones no lineales que limitarán su uso. Estas condiciones no lineales afectan, sobre todo, a las distorsiones de 2º y 3er orden, que son las que pueden afectar en mayor medida sobre la señal útil.

Una forma muy efectiva de simular no linealidades en circuitos eléctricos es el uso de las series de Volterra, una variante de los polinomios de Taylor en el que la respuesta depende en todo momento de los valores de los parámetros de entrada, incluyendo efectos de “memoria”, mediante acumulación de energía, de las capacidades e inducciones.

Como en las series de Taylor, las series de Volterra pueden ser truncadas en aquellos ordenes que sean superiores al que se considera dominante, por lo que nuestro modelo, considerando dominantes sobre todo el 2º y 3er orden de distorsión, puede truncarse a partir del 4º orden .

La distorsión afectará tanto al campo eléctrico como a la tensión mecánica. Las ecuaciones constitutivas, incluyendo estos efectos no lineales, quedarán descritas como

constitu_nolineal

siendo ΔT un polinomio de 3er orden que se expresa mediante la suma de 2 términos ΔT2T3, donde el subíndice indica que el polinomio es de 2º o de 3er orden. El caso de ΔD es similar.

Los polinomios que ΔT2, ΔT3, ΔD2 yΔD3 se muestran a continuación:

polinom

y además, se sigue teniendo que cumplir la ecuación de Lipmann para la conservación de la energía.

Las series que definen el modelo no lineal se pueden introducir en el modelo lineal de Mason a través de fuentes de tensión dependientes, tanto en la zona eléctrica como en la zona acústica. A dichas fuentes las denominamos VC y TC y están situadas, dentro del modelo, en la entrada eléctrica (caso de VC) y en línea común de la corriente de secundario (caso de  TC), tal y como se muestra en la figura.

Modelo de Mason con las fuentes no lineales

Modelo de Mason con las fuentes no lineales

Estas fuentes se derivan de las ecuaciones constitutivas del mismo modo que hemos derivado el modelo lineal, y se obtienen sus expresiones, que son

ecuaciones_nolin

Con estas expresiones en el modelo de Mason, tenemos un modelo equivalente no lineal de un material piezoeléctrico, que incluye los efectos de 2º y 3er orden de distorsión, y podemos estudiar el comportamiento de un componente fabricado con este tipo de materiales en presencia de señales interferentes.

CONCLUSIÓN

En esta entrada hemos querido presentar un modelo eléctrico útil para representar un material piezoeléctrico, extraído a partir de las ecuaciones constitutivas. Esto nos ha permitido llegar al modelo que W.P. Mason obtuvo en los años 40, y entender cómo realizó la extracción de los parámetros del modelo.

No sólo hemos obtenido el modelo de Mason, sino que hemos parametrizado un modelo que pueda representar las variaciones no lineales a partir de las series de Volterra, que nos permitirán realizar un modelo no lineal que incluya los efectos de 2º y 3er orden de distorsión, y poder predecir la respuesta de un dispositivo de estas características en condiciones de señales interferentes.

En la próxima entrada vamos a proceder a estudiar el modelo en un simulador, mostrando cómo se realiza un modelo equivalente del piezoeléctrico incluyendo los parámetros no lineales, describiremos un método de medida para extraer los parámetros no lineales y mostraremos los resultados obtenidos mediante simulación.

REFERENCIAS

  1. W.P. Mason, Electromechanical Transducers and Wave Filters”, Princeton NJ, Van Nostrand, 1948
  2. J. F. Rosenbaum, “Bulk Acoustic Wave Theory and Devices”, Artech House, Boston, 1988.
  3. M. Redwood, “Transient performance of a piezoelectric transducer”, J. Acoust. Soc. Amer., vol. 33, no. 4, pp. 527-536, April 1961.
  4. R. Krimholtz, D.A. Leedom, G.L. Mathaei, “New Equivalent Circuit for Elementary Piezoelectric Transducers”, Electron. Lett. 6, pp. 398-399, June 1970.
  5. Y. Cho and J. Wakita, “Nonlinear equivalent circuits of acoustic devices”, Proc. IEEE Ultrason. Symp., Nov. 1993, vol. 2, pp. 867–872.
  6. C. Collado, E. Rocas, J. Mateu, A. Padilla, and J. M. O’Callaghan, “Nonlinear Distributed Model for BAW Resonators”, IEEE Trans. On Microwave Theory and Techniques, vol. 57, no. 12, pp. 3019-3029, Dec. 2009.
  7. E. Rocas, C. Collado, J.C. Booth, E. Iborra, and R. Aigner, “Unified Model for Bulk Acoustic Wave Resonators’ Nonlinear Effects”, Proc. 2009 IEEE Ultrasonics Symposium, pp. 880-884, Sept. 2009.
  8. M. Ueda, M Iwaki, T. Nishihara, Y. Satoh, and K Hashimoto, “Investigation on Nonlinear Distortion of Acoustic Devices for Radio-Freqquency Applications and Its Suppression”, Proc. 2009 IEEE Ultrasonics Symposium, pp. 876-879, Sept. 2009.
  9. M. Ueda, M Iwaki, T. Nishihara, Y. Satoh, and K Hashimoto, “A Circuit Model for Nonlinear Simulation of Radio-Frequency Filters Employing Bulk Acoustic Wave Resonators”, IEEE Trans. On Ultrasonics, Ferroelectrics, and Frequency control, vol. 55, 2008, pp. 849-856.
  10. D. S. Shim and D. Feld, “A General Nonlinear Mason Model of Arbitrary Nonlinearities in a Piezoelectric Film”, Proc. 2010 IEEE Ultrasonics Symposium, pp. 295-300, Oct. 2010.
  11. D. Feld, “One-Parameter Nonlinear Mason Model for Predicting 2nd & 3rd Order Nonlinearities in BAW Devices”, Proc. 2009 IEEE Ultrasonics Symposium, pp. 1082-1087, Sept. 2009.
Anuncios

Estudio del comportamiento de un material piezoeléctrico (I)

Los dispositivos electrónicos, cada vez más, forman parte de nuestras herramientas de comunicación, y los componentes electrónicos son cada vez más conocidos, lo que permite aprovechar su potencial en el proceso de diseño. En esta entrada vamos a estudiar el comportamiento electromecánico de un material muy popular: el piezoeléctrico, explicaremos las ecuaciones constitutivas del fenómeno y realizaremos un modelo que permita el estudio del comportamiento en un simulador de circuitos.

LOS MATERIALES PIEZOELÉCTRICOS

Un piezoeléctrico consiste en un material no conductor que posee propiedades mecánicas activadas por la aplicación de campos eléctricos. Por reciprocidad, cuando a ese dispositivo piezoeléctrico le aplicamos torsiones y deformaciones mecánicas, también se generan fuerzas de tipo eléctrico.

El material piezoeléctrico más conocido por los diseñadores electrónicos es el cuarzo (SiO2), cristalizado en trigonal (cuarzo-α) hasta 570°C y en hexagonal (cuarzo-β) a temperaturas entre 570° y 870°C. A temperaturas superiores, el cuarzo se transforma en otro compuesto de sílice denominado tridimita.

La cristalización del cuarzo en su variedad hexagonal proporciona propiedades piezoeléctricas cuando se aplica al material campos eléctricos o tensiones mecánicas, y es muy utilizado en electrónica por este comportamiento, logrando obtener resonadores electromecánicos con muy alto factor de calidad.

Otros materiales piezoeléctricos muy utilizados en la industria electrónica son el nitruro de Aluminio (AlN), el óxido de Zinz (ZnO) y los materiales PZT, en diversas variantes.

En esta entrada vamos a estudiar el comportamiento piezoeléctrico a partir de las ecuaciones constitutivas que relacionan las propiedades mecánicas con las eléctricas, y a partir de ahí, obtener un modelo eléctrico que permita su uso en una herramienta de simulación de circuitos.

CONCEPTO DE ONDAS ACÚSTICAS

En Física denominamos onda acústica a un fenómeno mecánico de propagación de una onda de presión a lo largo de un material. Al poseer esta onda de presión una variación temporal periódica, puede propagarse a diversas frecuencias. Las ondas de presión que están situadas en la banda desde 100Hz a 10KHz se caracterizan porque son audibles, esto es, nuestro sentido del oído puede captarlas, enviar la información captada al cerebro y ser procesada para realizar una determinada acción. Sin embargo, todas las ondas de presión entran dentro del concepto de onda acústica, puesto que es un campo de fuerzas que se asemeja al campo eléctrico por su comportamiento.

En las ondas de presión acústicas distinguimos dos magnitudes importantes: la tensión T y la deformación S,. La primera, T, es la fuerza por unidad de superficie que aparece en el entorno de un punto material de un medio continuo. Es, por tanto, una presión mecánica cuyas unidades son N/m2.

Descripción de la tensión mecánica

Asociada a ésta aparece la deformación S, que es desplazamiento que se produce en las partículas del material al aplicar una presión sobre éstas. La deformación se mide en m/m.

Desplazamiento producido por una deformación

Desplazamiento producido por una deformación

La relación entre ambas magnitudes se puede expresar asemejando la tensión T con el desplazamiento eléctrico D y la deformación S con el campo eléctrico E. Por tanto, si el campo eléctrico E es proporcional al desplazamiento eléctrico D a través de la constante dieléctrica del material ε, la deformación S es proporcional a la tensión T a través de un tensor constante [cE], como se puede ver en la expresión

Si al desplazamiento mecánico producido le denominamos u, podemos poner la deformación S como un gradiente de este desplazamiento mecánico a través de

deformación

Con lo que se puede ver la similitud con el campo eléctrico, que deriva en forma de gradiente de un potencial eléctrico V.

Normalmente T y S son magnitudes vectoriales, y [cE]  es un tensor. Pero si manipulamos el material de modo que sólo tengamos deformación en uno de los ejes (por convenio, a partir de aquí vamos a usar el eje Z), las expresiones se simplifican siendo T y S simples magnitudes escalares, y cE una constante de proporcionalidad. Las dimensiones de esta constante son las mismas que la tensión, tiene dimensiones de presión (N/m2).

La deformación está sujeta a la 2ª ley de Newton, que relaciona la velocidad de deformación con la tensión aplicada a través de

ley de newton donde ρ es la densidad de masa por unidad de volumen. Como hemos escogido trabajar sólo en una dirección de propagación, podemos poner la divergencia de T como

divT

y teniendo en cuenta que S es la derivada con respecto a z del desplazamiento mecánico u, introduciendo ésto en la expresión de la Ley de Newton y agrupando los términos obtenemos

helemholtzque es una ecuación de onda similar a la que se obtiene del desarrollo de las ecuaciones de Maxwell en electromagnetismo. De esta ecuación se puede derivar la ecuación de Helmholtz, asumiendo que la solución de esta ecuación es una solución del tipo

desplazay usando esta solución en la ecuación de onda anterior, obtenemos que

onda_ecua

que corresponde a la ecuación de Helmholtz. En la ecuación de Helmholtz, la constante de propagación K se define por

propaga

donde v es la velocidad de propagación de la onda acústica (velocidad del sonido en el medio acústico). De aquí se puede obtener la constante cE, que está relacionada con el material a través de su densidad y de la velocidad de propagación de la onda acústica en el mismo.

conste

Al tratarse de una onda viajando a través de un medio material, podemos tratar la misma como una onda que se propaga a través de una línea de transmisión, cuya impedancia Z0 se obtiene por

impedance_ac

que denominamos impedancia acústica del medio y que se expresa en Rayl o N⋅s/m3. La velocidad de propagación v, que es la velocidad del sonido en el medio material, está relacionada con el desplazamiento acústico lineal a través de

velci

y el desplazamiento acústico angular se puede expresar por

angular

Viendo la similitud entre las ecuaciones de la acústica y las ecuaciones del campo electromagnéticos, podemos establecer una analogía en ambos tipos de interacciones que nos va a permitir desarrollar correctamente el estudio de los materiales piezoeléctricos.

ECUACIONES CONSTITUTIVAS DE UN MATERIAL PIEZOELÉCTRICO

En un medio piezoeléctrico, como en cualquier otro material, se producen tensiones y deformaciones acústicas. La peculiaridad del piezoeléctrico es que esas tensiones que aplicamos generan campos eléctricos. Del mismo modo, por reciprocidad, cuando aplicamos un campo eléctrico a un piezoeléctrico, generamos tensiones acústicas en el material. Por tanto, podemos relacionar estas tensiones y campos eléctricos mediante las ecuaciones constitutivas del piezoeléctrico, que son

consti

Estas ecuaciones muestran la relación entre la tensión generada en la superficie del piezoeléctrico T con la deformación S, cuando se le aplica un campo eléctrico E. Recíprocamente, se produce un desplazamiento eléctrico en el piezoeléctrico cuando se aplica una deformación S, apareciendo un campo eléctrico E. En este caso, además de la constante que relaciona la deformación con la tensión cE, también aparece la constante dieléctrica del material εS y la constante piezoeléctrica e33, que liga la tensión T con el campo eléctrico E en la dirección Z. En un sistema tridimensional, esa constante estaría representada por un tensor.

Con estas ecuaciones constitutivas, podemos obtener la ecuación de onda anterior, teniendo en cuenta las mismas condiciones. Sabiendo que el desplazamiento eléctrico es, por el teorema de Gauss

gauss

y que aunque se le aplique una deformación o un campo eléctrico no hay variación de la carga espacial, podemos reescribir la ecuación de onda anterior como

onda2donde la constante cD es la constante de deformación cuando aparece un campo electrostático en el medio material y se puede escribir por

consta2

que es característica de un medio piezoeléctrico. Así, la solución a la ecuación de onda será similar a la del caso de un medio material acústico, donde esa constante cD, se puede calcular a través de

consta3

manteniéndose el resto de ecuaciones igual.

Como la solución de la ecuación de onda del piezoeléctrico es una onda que se propaga en una dirección determinada, podemos representar el medio de propagación como una línea de transmisión de impedancia A⋅Z0, donde Z0 es la impedancia acústica que depende exclusivamente del medio material a través de su densidad ρ y la velocidad de propagación del sonido v en el medio material; y A es la superficie del material piezoeléctrico.

linea

Línea de transmisión equivalente de la parte acústica

Al ser una línea de transmisión, tendrá resonancias cada n·λ/4, siendo λ la longitud de onda de la onda acústica. Si el dieléctrico tiene un espesor d, una resonancia λ/4 en la línea de transmisión. Por tanto, el material piezoeléctrico se puede usar para realizar resonadores eléctricos, ya que la resonancia acústica se puede relacionar, a través de las ecuaciones constitutivas, con la resonancia eléctrica.

CONCLUSIÓN

Hemos visto en esta entrada cómo se producen las ondas acústicas en un material, y la relación existente, a través de las ecuaciones constitutivas, entre los campos acústico y eléctrico.

Los materiales piezoeléctricos son de uso cada vez más común en electrónica, ya sea como resonadores, como generadores de sonido o como generadores de energía eléctrica para Energy Harvesting, realizando alimentadores eléctricos que usan la energía procedente de la vibración acústica para generar una tensión eléctrica.

El modelado circuital equivalente de estos componentes está resuelto a través de las ecuaciones constitutivas, siendo los modelos más habituales el modelo de Redwood o el de Mason.

En las próximas entradas trataremos de explicar el modelo equivalente de Mason de un piezoeléctrico, tanto en su versión lineal como no lineal.

REFERENCIAS

  1. W.P. Mason, Electromechanical Transducers and Wave Filters”Princeton NJ, Van Nostrand, 1948
  2. J. F. Rosenbaum, “Bulk Acoustic Wave Theory and Devices”, Artech House, Boston, 1988.
  3. M. Redwood, “Transient performance of a piezoelectric transducer”, J. Acoust. Soc. Amer., vol. 33, no. 4, pp. 527-536, April 1961.
  4. R. Krimholtz, D.A. Leedom, G.L. Mathaei, “New Equivalent Circuit for Elementary Piezoelectric Transducers”, Electron. Lett. 6, pp. 398-399, June 1970.

El Control Automático de Ganancia: topología, funcionamiento y uso (I)

Una de las topologías más comunes en el diseño electrónico la constituye el Control Automático de Ganancia (AGC). En esta entrada vamos a proceder a estudiar cuál es su filosofía de funcionamiento, la topología básica y su uso más común. Procederemos también a su simulación en MatLab, usando el simulador SIMULINK, para entender mejor el funcionamiento de este sistema.

LOS AMPLIFICADORES LINEALES

Uno de los bloques más comunes en un sistema es el amplificador lineal. Este es un dispositivo que proporciona una salida que es directamente proporcional a la entrada. Al ser el valor de salida mayor que el valor de entrada, el bloque realiza una elevación de nivel, por tanto, se trata de una amplificación. Si el nivel de salida fuese inferior al nivel de entrada, entonces hablaríamos de una reducción de nivel o atenuación.

Los amplificadores lineales pueden ser amplificadores con ganancia fija, que es la constante de proporcionalidad entre la entrada y la salida, y con ganancia variable, de modo que pueden variar su ganancia a través de una señal de control externa vc.

Expresiones de la ganancia: fija y variable

Esta señal de control es una variable que también depende del tiempo, aunque en condiciones de control libre, que es el realizado por el usuario, una vez elegido el valor del control esa variable pasa a ser estacionaria con el tiempo y el amplificador pasa a tener ganancia fija.

Sin embargo, las señales de entrada pueden tener oscilaciones debidas al canal de propagación, y subir o bajar de valor en función del tiempo. Si el amplificador tiene ganancia fija, la salida seguirá a las variaciones de entrada.

Por lo general los amplificadores convencionales suelen tener ganancia fija con una regulación externa manipulable por el usuario. Sin embargo, dentro de los sistemas de comunicaciones se pueden dar casos en los cuales hay que asegurar siempre que la salida tome un valor fijo. Y para ello es indispensable recurrir al Control Automático de Ganancia (AGC).

EL AGC O CONTROL AUTOMÁTICO DE GANANCIA

El AGC es un sistema realimentado, que usa la variable de salida, tomando una muestra, para procesarla debidamente y generar una señal de control vc(t) que permita variar la ganancia del amplificador en función del nivel de salida que se elija. Por tanto, un AGC proporciona una variable de salida fija frente a las variaciones de entrada.

El diagrama de bloques clásico de un AGC se puede ver en la siguiente figura

Fig. 1 – Diagrama de bloques de un AGC

Consta de un VGA o amplificador variable por tensión, que responde a la expresión vista en el apartado anterior, un detector de envolvente, porque la amplitud de la señal vout contiene la información de la variación de la señal de entrada, ya que vout es proporcional a vin, un comparador, que compara la señal detectada con una señal de referencia vref, que es la que gobernará el nivel de salida adecuado en vout y un filtro integrador, que proporciona la variable de control.

Al variar vin en el instante t0, el VGA está en estado estacionario, comportándose como un amplificador lineal de ganancia fija. Esto provoca una variación en la señal de salida vout que sigue a la entrada vin. Esta variación se detecta mediante el detector de envolvente provocando un cambio en la salida del comparador, que al ser integrado modifica el valor de vc adecuándolo para que vout se corrija y pase a mantener el valor antes del cambio.

Es un proceso dinámico: las señales vin y vout varían de forma temporal pero manteniendo un nivel estacionario de envolvente. Por ejemplo, una onda senoidal pura tiene una envolvente constante, ya que la función seno está acotada

Fig. 2 – Función variable de entrada de tipo senoidal

Cuando se detecta un cambio en la envolvente en un determinado instante de tiempo, el valor de pico de la amplitud cambia y es detectado por el detector, que inicia un proceso de realimentación temporal que no afecta a la forma de la onda, pero sí a su amplitud.

Fig. 3 – Variación de la amplitud en una señal senoidal

Este cambio es el que obligará a que vc tome el valor adecuado, realizándolo de forma gradual.

MECANISMOS DE CONTROL EN UN AGC

Volvemos al sistema de la Fig.1, donde el VGA tiene una ganancia representada por la expresión

Ganancia del VGA

En esta expresión se elimina el dominio temporal, puesto que en este instante no nos interesa la variación temporal de vc, ya que si no hay variación en vi, vc se mantiene estacionario.

La señal de entrada es una señal de la forma

ecuacion2

Señal de entrada

La señal de salida será de la forma

Señal de salida

Esta señal pasará por el detector de envolvente, cuya salida es una señal que es proporcional a la amplitud de la señal de entrada, siendo k la constante de proporcionalidad. Por tanto, la señal de salida del detector de envolvente será

Salida del detector de envolvente

Esta señal se pasa a través de un amplificador logarítmico, ya que la dependencia de vE con respecto a vc es exponencial. Como la base es natural, elegimos el logaritmo natural como amplificador logarítmico, y se obtiene una tensión de salida v2 cuya expresión es

Señal de salida del amplificador logarítmico

En esta expresión podemos comprobar que k y g0 son valores constantes, y que x y vc son los que pueden variar con respecto al tiempo. Si ahora incluimos la variación temporal de x, tendremos que la expresión toma la forma

ecuacion6

Variable de salida del amplificador logarítmico con variación temporal

Por tanto una variación de x queda contrarrestada por una variación de vc para que v2 vuelva a tener el valor anterior al cambio en x.

Al realizar la comparación entre la tensión v2(t) y vR, que es un valor fijo y que marcará el nivel de salida que debe mantener el amplificador, tenemos una señal v1 que tiene la siguiente expresión

ecuacion7

Señal de entrada al filtro paso bajo

Esta señal se pasa a través de un filtrado paso bajo que la integra, proporcionando vC(t). Si el filtro tiene una respuesta temporal h(t), lo que realizamos es una convolución de la señal v1 con la respuesta temporal h(t)

ecuacion8

Convolución de V1

Y de aquí obtenemos

ecuacion9

Expresión de V1 en función de X

En el dominio temporal la convolución es una ecuación integral dinámica, por lo que si usamos el dominio de Laplace, pasaremos esa respuesta convolucional a una respuesta en el dominio de la variable compleja s que es lineal. Usando este dominio, la ecuación anterior queda como

ecuacion10

Transformada de Laplace de la expresión anterior

que es el resultado de aplicar el operador de la transformada de Laplace. Vamos a estudiar el valor de V1(s) si la salida tiene un valor una amplitud y

ecuacion11

Señal de salida

quitando la dependencia con k y con g0. En este casi, siguiendo los mismos pasos que en el caso anterior, tendremos que

ecuacion12

Expresión de la función de transferencia del AGC

El primer término es el cociente de dos funciones, una que depende de la amplitud de salida y otra que depende de la amplitud de entrada. Si elegimos el producto k·g0=1, obtendremos que

ecuacion13

Relación entre entrada y salida

Como y(t) y x(t) tienen valores de tensión, podemos aplicar la definición de dB, que es:

ecuacion14

Expresiones de la entrada y salida en dB

por lo que el cociente anterior quedaría

ecuacion15

Relación de envolventes en dB

eliminando el dominio temporal y convirtiendo el sistema en un sistema totalmente lineal. Entonces tendremos que

ecuacion16

Función de transferencia de la relación de envolventes

siendo ésta la función de transferencia de la variación en dB de las amplitudes de salida y de entrada.

Si el filtro utilizado es un filtro integrador con polo en el origen, de la forma

ecuacion17

Filtro integrador

tendremos que la expresión nos quedará

ecuacion18

Función de transferencia final

Supongamos ahora que damos un salto de 1 dB a la envolvente de entrada XdB, pudiendo ser hacia arriba o hacia abajo. Llamamos a la nueva envolvente X’dB(s), y a la de salida Y’dB(s). Como subimos o bajamos un 1 dB, tenemos que :

ecuacion19

Variación de la envolvente de entrada

Y además tenemos que

ecuacion20

Relación entre señales con variación

ya que la realimentación debe responder siempre de la misma manera. Haciendo la sustiticuón de la expresión de la variación de entrada en la expresión anterior tenemos

ecuacion22

Espresión para el cálculo de la señal de salida

Por tanto, podremos calcular Y’dB(s) multiplicando por la función de transferencia

ecuacion23

Variación de la señal de salida con respecto a la entrada

Y sabiendo que el primer término es precisamente YdB(s), podemos poner la expresión como

ecuacion24

Diferencia entre envolventes de salida

La ecuación anterior liga a la nueva envolvente Y’dB(s) con la anterior YdB(s). Como es una respuesta temporal, tendremos que aplicar la transformada inversa, obteniendo

ecuacion25

Relación entre envolventes en el dominio del tiempo

Estudiemos este resultado: Cuando subimos 1 dB (instante t=0), la ecuación queda como y’dB(t)–ydB(t)=+δ(t)=+1, ya que en t=0 el filtro h(t) todavía no ha respondido. Por tanto, en el instante inicial la diferencia entre la envolvente nueva y la inicial es de 1dB. Cuando t comienza a crecer, tenemos una respuesta exponencial decreciente debido al segundo término de la expresión anterior, por lo que a medida que va aumentando el tiempo, la diferencia entre la envolvente nueva y’dB(t) y la inicial ydB(t) va disminuyendo (inicialmente y’dB(t)>ydB(t)) hasta que ambas son iguales.

Si por el contrario, disminuimos la envolvente de entrada 1dB, la respuesta queda como y’dB(t)–ydB(t)=-δ(t)=-1, de modo que cuando disminuimos 1dB (instante t=0), la envolvente final disminuye en ese valor por la misma razón que en el caso anterior. Por tanto, en el instante inicial la diferencia entre la envolvente nueva y la inicial es de –1dB, que es el salto que se produce en la señal de entrada. Cuando t comienza a crecer, se produce una exponencial creciente que reduce esa diferencia (en este caso tenemos que y’dB(t)<ydB(t)), por lo que la diferencia también va disminuyendo hasta que ambas vuelven a ser iguales.

De aquí se deduce que cuando la envolvente de entrada sube o baja 1 dB, la de salida, en el instante inicial, tiende a subir o bajar siguiendo a la variación de la envolvente de entrada, pero cuando pasa un tiempo, la de salida se estabiliza hasta que llega al valor inicial ydB(t).

El tiempo de respuesta t del AGC, en el que la diferencia de envolventes es precisamente α·A/e es τ=1/α·A, que es la constante de tiempo de respuesta del AGC. Si ese tiempo es muy alto, el AGC responde lentamente, mientras que si ese tiempo es muy bajo, el AGC responde rápidamente. Es necesario un compromiso con el tiempo de respuesta del AGC en señales que contienen también variaciones nominales por su contenido, como las señales analógicas de audio o vídeo, para no confundir una variación de nivel con una variación de ese contenido.

CONCLUSION

En esta entrada hemos podido comprobar cómo es el diagrama de bloques de un AGC, estudiando su respuesta en el dominio de Laplace y en el dominio temporal. Hemos llegado a una relación de transferencia que nos permite relacionar las variaciones de la señal de salida con las de entrada y cómo podemos calcular el tiempo de respuesta del AGC, que tendremos que incluir a través del filtro integrador y del estudio de la constante de variación de la ganancia del amplificador.

En la siguiente entrada realizaremos el estudio este sistema mediante SIMULINK.

REFERENCIAS

  1. Benjamin C. Kuo; “Automatic Control Systems”; 2nd ed.; Englewood Cliffs, NJ; Prentice Hall; 1975
  2. Pere Matí i Puig; “Subsistemas de radiocomunicaciones analógicos”;Universitat Oberta de Catalunya;2010

 

Simulación de un PLL digital con SIMULINK

En Octubre de 2013 realizábamos un análisis de un PLL digital con un filtro de segundo orden. Llegábamos a las expresiones matemáticas y representábamos en MatLab la forma de la fase estimada. En esta entrada vamos a utilizar la herramienta SIMULINK integrada en MatLab, que nos permite realizar análisis de sistemas mediante bloques definidos dentro del propio simulador.

Representación de un ADPLL en bloques

Si recordamos la entrada de octubre, el diagrama de bloques del PLL digital era

Diagrama de bloques del PLL digital

Diagrama de bloques del PLL digital

donde teníamos un comparador de fase, del que se obtenía la estimación de fase, el filtro de lazo y un VCO. Recordemos también que el filtro de lazo H(z) genérico, para un PLL de segundo orden, era

Función de transferencia del filtro de lazo digital

Función de transferencia del filtro de lazo digital

Tratándose de un filtro PI (proporcional-integrador), ya que la primera constante, α, es simplemente un factor multiplicador mientras que el segundo término es la transformada z de un integrador.

Para simular la respuesta de este diagrama de bloques, vamos a generar una serie de bloques que nos permitan realizar la simulación de la PLL.

Generación de la fase de entrada

Para generar la fase de entrada, lo que vamos a hacer es generar una onda que responda a un periodo concreto T, en el que tendremos n muestras que se hacen con un periodo de muestreo TS. Por tanto, el argumento ΦREF con el que vamos a comparar el argumento del VCO es

Generación del argumento de referencia

Generación del argumento de referencia

Esta señal se convierte en un fasor complejo del tipo

Representación fasorial del argumento de referencia

Representación fasorial del argumento de referencia

y separando las señales en su parte real e imaginaria, tendremos dos señales a comparar:

Argumento de referencia en parte real e imaginaria

Argumento de referencia en parte real e imaginaria

La fase θ(n) será la fase de referencia, la que queremos sintetizar con el ADPLL, mientras el el término discreto nos permite ver la evolución temporal de la fase.

Para realizar esta generación se recurre al siguiente diagrama de bloques en SIMULINK.

Diagrama de bloques SIMULINK del generador de argumento complejo

Diagrama de bloques SIMULINK del generador de argumento complejo

donde tenemos un bloque Clock que genera la base de tiempos discreta. Esa base de tiempos se multiplica por un valor K que corresponde a la pulsación 2π/T y se suma con la fase de referencia, que corresponde con la fase de referencia θ. La salida la multiplicamos por el valor complejo j y hacemos la exponencial de ese producto. Aplicando el bloque Complex to Real-Imag, podemos extraer dos líneas, una con el coseno del argumento y otra con el seno. De este modo podemos generar la fase de entrada.

Generación del VCO

El VCO será un dispositivo que posea la fase estimada de la forma

Argumento del VCO

Argumento del VCO

Para realizar esta operación, tendremos que usar el siguiente diagrama de bloques.

Diagrama de bloques SIMULINK del VCO

Diagrama de bloques SIMULINK del VCO

En este caso, la estimación de fase del VCO se pondrá en función de la ganancia del VCO, Kv·T. A esta estimación de fase se le suma ωT, siendo ω la pulsación 2π/Ts, con Ts el periodo de muestreo de la señal.

El resultado pasa después por un integrador y le aplicamos una función coseno y otra función seno. El bloque ()*, que cambia de signo la línea de seno, convirtiendo la señal en una compleja conjugada, extrae a la salida las ecuaciones descritas para el NCO.

Representación del comparador de fase

El comparador de fase debe proporcionar a la salida la diferencia de fase, que es:

Error de fase

Error de fase

A partir de las ecuaciones generadas para la fase de referencia y para la estimación de fase, tenemos que hacer un multiplicador de números complejos como el que se muestra en el diagrama de bloques

Multiplicador de números complejos

Multiplicador de números complejos

Con el bloque Real-Imag to Complex se convierte AR, AI, BR, BI en sendos números complejos A y B

Transformación de las entradas a número complejo

Transformación de las entradas a número complejo

el resultado es un complejo CP cuyo valor es

Valor complejo de la diferencia de fases

Valor complejo de la diferencia de fases

y podemos ver que la diferencia de fase está en el argumento de la exponencial compleja. Aplicando ahora un bloque que convierte este número en Real-Imag, obtenemos

Diferencia de fase en forma real e imaginaria

Diferencia de fase en forma real e imaginaria

Aplicándole un bloque que convierta Real-Imag en Mag-Angle, como éste

Transformación Real-Imag a Mag-Ang

Transformación Real-Imag a Mag-Ang

obtendremos el error de fase

Error de fase

Error de fase

que es la señal resultado del comparador de fase.

Filtro de lazo

El filtro de lazo utilizado en un ADPLL suele ser un filtro proporcional-integral

Diagrama de bloques de un filtro de lazo digital

Diagrama de bloques de un filtro de lazo digital

La transformada z de este filtro la hemos visto en la introducción. En SIMULINK vamos a poner la dependencia de α, β en función de dos variables externas. El filtro de lazo en SIMULINK es

Diagrama de bloques SIMULINK de un filtro de lazo digital

Diagrama de bloques SIMULINK de un filtro de lazo digital

Donde Kp es α (factor proporcional) y Ki es β (factor integrador). Por un lado, realizamos directamente el producto de Δθ por Kp y lo llevamos a un sumador, mientras que por otro lado hacemos el producto de Δθ por Kp, lo integramos y llevamos al sumador, y con la suma obtenemos el tune (T(n)) del VCO.

La respuesta de este filtro a una señal escalón u(n) es una señal de la forma

Respuesta del filtro de lazo a una señal escalón

Respuesta del filtro de lazo a una señal escalón

que se corresponde con la expresión

Expresión de la respuesta del filtro de lazo a señal escalón

Expresión de la respuesta del filtro de lazo a señal escalón

Estudio completo del transitorio

En SIMULINK se pueden dibujar los bloques y crear un bloque nuevo, de tal modo que tengamos simplificados los mismos. El diagrama de bloques que vamos a simular en SIMULINK es

Diagrama de bloques SIMULINK del ADPLL

Diagrama de bloques SIMULINK del ADPLL

donde PhaseRef será la fase de entrada o referencia. Tomaremos como medidas Phase_error (donde se podrá comprobar la evolución del error de fase) y Loop, donde se podrá comparar la evolución de las señales de VCO y de referencia.

Para los valores Kp y Ki (α y β), tenemos que recordar que se debía cumplir que

Segunda condición de enganche del PLL

Condición de enganche del PLL

Eligiendo α=0.03 y β=0.002, obtenemos que el error de fase, para una fase de entrada de π/3, es

Respuesta el PLL a un cambio de fase en la entrada

Respuesta el PLL a un cambio de fase en la entrada

Como podemos comprobar, cuando se inicia, el error de fase toma un valor muy alto, que se va trasladando como una forma senoidal amortiguada, hasta que se convierte en cero. En ese momento la fase está enganchada. Como se puede comprobar, es la respuesta a un escalón en un filtro de segundo orden con factor de amortiguamiento.

Si ahora representamos Loop, obtendremos

Seguimiento de la fase con respecto a la fase de referencia

Seguimiento de la fase con respecto a la fase de referencia

Donde podremos ver que al principio las fases son muy diferentes, pero que ambas ondas tienden a converger a la misma fase, por lo que hemos igualado la fase a la fase de referencia, lo que significa el enganche de fase.

Si ahora usásemos sólo un filtro proporcional α (β=0), y simulásemos, obtendríamos

Respuesta a un escalón de un ADPLL de primer orden

Respuesta a un escalón de un ADPLL de primer orden

Que es la respuesta a un escalón de un filtro paso bajo de primer orden.

Conclusiones

En esta entrada hemos podido ver el comportamiento de un ADPLL en régimen transitorio mediante el uso de SIMULINK, que nos proporciona una herramienta de simulación potente para poder analizar sistemas en diagrama de bloques. Hemos podido comprobar que lo analizado en la entrada de octubre de 2013 es correcto y hemos podido comprobar su comportamiento transitorio.

Referencias

  1. C. Joubert, J. F. Bercher, G. Baudoin, T. Divel, S. Ramet, P. Level; “Time Behavioral Model for Phase-Domain ADPLL based frequency synthesizer”; Radio and Wireless Symposium, 2006 IEEE, January 2006
  2. S. Mendel, C. Vogel;”A z-domain model and analysis of phase-domain all-digital phase-locked loops”; Proceedings of the IEEE Norchip Conference 2007, November 2007
  3. R. B. Staszewski, P. T. Balsara; “Phase-Domain All-Digital Phase-Locked Loop”; IEEE Transactions on Circuits and Systems II: Express Briefs; vol. 52, no. 3, March 2005

Como simular parámetros S usando un simulador convencional

Simuladores de circuitos hay muchos. Los usuarios de este tipo de aplicaciones software podrían decir varios tipos, desde LTSpice, PSpice, Electronic Workbench, Microwave Office, Advance Design System, Genesys, etc. Se puede hacer una larga lista y se encontrarían para todos los gustos. Además, casi todos tienen las simulaciones importantes: análisis en DC, en AC, transitorios, análisis de ruido, etc. En esta entrada rememoro un artículo que escribí en octubre de 1997 y en el que mostraba cómo se podía simular un circuito de RF usando el simulador SPICE.

Un simulador de circuitos es una aplicación que permite analizar el comportamiento eléctrico de circuitos electrónicos a través de su descripción esquemática. Por tanto, una vez dibujado el circuito y a través de las librerías que describen el comportamiento de los componentes, es posible analizar la respuesta de un esquema eléctrico en diversos tipos de análisis. Así, podemos encontrarnos con posibilidad de analizar DC, AC, análisis transitorios, análisis de ruido, trasformadas de Fourier, etc.

Dentro de los simuladores existen varios tipos, algunos como el Advanced Design System o el Microwave Office, que están especialmente diseñados para analizar circuitos de alta frecuencia, usando las técnicas matriciales como los parámetros ABCDlas matrices Z e Y y los parámetros S. En los circuitos de alta frecuencia, el método de analizar el comportamiento en frecuencia de un circuito es a través de los parámetros S.

Para ello, el circuito se analiza como un cuadripolo, en el que se definen unas ondas incidentes (a1, a2) y unas ondas reflejadas (b1, b2), tal y como se muestra en la figura

Cuadripolo con ondas incidentes y reflejadas.

Cuadripolo con ondas incidentes y reflejadas.

Los parámetros S se definen a través de la siguiente relación matricial

Relación entre las ondas a través de la matriz de parámetros S

Relación entre las ondas a través de la matriz de parámetros S

de tal modo que cada uno de los parámetros S de la matriz refleja un significado eléctrico. Estos son:

  • S11: Es la relación entre la onda reflejada b1 y la onda incidente a1, cuando no hay onda incidente a2. El parámetro es equivalente al coeficiente de reflexión en la entrada, y representa la onda estacionaria que se produce en la entrada del cuadripolo.
  • S21: Es la relación entre onda saliente b2 y la onda incidente a1, cuando no hay onda incidente a2. El parámetro es equivalente a la transmisión de señal desde la entrada a la salida, y representa el trasvase de energía que se produce del puerto de entrada del cuadripolo al puerto de salida.
  • S12: Es la relación entre onda saliente b1 y la onda incidente a2, cuando no hay onda incidente a1. El parámetro es equivalente a la transmisión de señal desde la salida a la entrada, y representa el trasvase de energía que se produce del puerto de salida del cuadripolo al puerto de entrada.
  • S22: Es la relación entre la onda reflejada b2 y la onda incidente a2, cuando no hay onda incidente a1. El parámetro es equivalente al coeficiente de reflexión en la salida, y representa la onda estacionaria que se produce en la salida del cuadripolo.

Las ondas a1, a2 y b1, b2 se pueden escribir, en función de las tensiones incidente y reflejada, mediante las expresiones

descarga1

d373feaaf9a9c377c1a213557c5606ba

siendo Vn+ la tensión incidente y Vn la reflejada, sobre una impedancia característica Z0.

Por tanto, la matriz de parámetros S ofrece una forma muy útil de analizar circuitos de alta frecuencia. Sin embargo, no todos los simuladores son capaces de ofrecer en sus tipos de análisis este tipo de representación de matricial.

¿Cómo construir una equivalencia que permita analizar parámetros S en un simulador que no tiene dicha función?

Ante todo hay que recordar que un análisis de parámetros S es una simulación específica de AC. Y este tipo de simulación está incluida en casi todos los simuladores de circuitos.  Sin embargo, el análisis AC sólo permite calcular tensiones y corrientes globales, no separando en incidentes y reflejadas. Por tanto, la única cuestión es que hay que realizar una transformación para encontrar un circuito equivalente que permita, usando las tensiones y corrientes globales del circuito, mediante el análisis AC, calcular los parámetros S.

Para ello se propone el siguiente cuadripolo:

Cuadripolo con tensiones y corrientes de AC

Cuadripolo con tensiones y corrientes de AC

En el cuadripolo tenemos una tensión de generador Vg, una resistencia de generador Rg, una resistencia de carga RL y unas tensiones Vi (generada por la impedancia Zi de entrada al cuadripolo) y una tensión Vo (que tiene una resistencia equivalente Zo en el cuadripolo). Vamos a suponer además, para simplificar los cálculos, que Rg=RL=Z0. A partir de ahora vamos a calcular, en primer lugar, el coeficiente de reflexión a la entrada y la transmisión entre entrada y salida. Las expresiones para calcular estos parámetros son:

Expresiones de cálculo de S11 y S21 en función de las impedancias y las tensiones

Expresiones de cálculo de S11 y S21 en función de las impedancias y las tensiones

pero del circuito también tenemos que Vi se puede calcular a través del divisor de tensión de entrada formado por Vg, Z0 y Zi:

Cálculo de la tensión de entrada al cuadripolo.

Cálculo de la tensión de entrada al cuadripolo.

y sustituyendo esta expresión en la de S21 podemos obtener la relación entre la tensión de salida Vo y la del generador Vg

Expresión de la tensión Vo en función de Vg

Expresión de la tensión Vo en función de Vg

Por tanto, para calcular S21 basta con colocar en el generador una fuente de AC de amplitud Vg=2, y la tensión de salida Vo equivaldría al parámetro S21.

El parámetro S11 se calcularía a través de la expresión del coeficiente de reflexión y del cálculo del divisor de tensión, cuando Vg=2. Del divisor de tensión tenemos que

Cálculo de S11 cuando Vg=2

Cálculo de S11 cuando Vg=2

por lo tanto, el parámetro S11 se puede calcular obteniendo la tensión en Vo y restando 1V.

Esquema de nuestro circuito equivalente

Ahora vamos a transformar en esquema eléctrico nuestro circuito equivalente. En principio tenemos un generador de AC de valor 2V, que equivale a Vg y la impedancia de generador y carga de valor Z0. A eso le añadimos un circuito en el punto de Vi consistente en un generador de 1V de AC y una resistencia de valor elevado, para que no circule corriente a través de ella.

Circuito equivalente para analizar S11 y S21 con un análisis en AC

Circuito equivalente para analizar S11 y S21 con un análisis en AC

Usando este circuito equivalente en un cuadripolo, se pueden entonces analizar los parámetros S del mismo usando el análisis AC de cualquier simulador. Es un circuito de mucha utilidad cuando se diseña en alta frecuencia, ya que los analizadores suelen usar los parámetros S para analizar los cuadripolos.

Comprobación del circuito equivalente.

Por último, para comprobar la fiabilidad del circuito equivalente confeccionado, vamos a estudiar el comportamiento de un cuadripolo sencillo, tipo filtro de alta frecuencia, y comparar con el resultado obtenido en un simulador convencional.

Cuadripolo a testear

Cuadripolo a testear

Realizando la simulación en un simulador de alta frecuencia se obtiene el siguiente resultado

Resultado de la simulación del filtro en un simulador de alta frecuencia

Resultado de la simulación del filtro en un simulador de alta frecuencia

Simulamos ahora el filtro en un simulador tipo Electronic Workbench, usando el circuito

Filtro simulado con Electronic Workbench

Filtro simulado con Electronic Workbench

y cuyo resultado es

Resultados en la simulación en Electronic Workbench

Resultados en la simulación en Electronic Workbench

y si lo comparamos con el resultado obtenido con el simulador de alta frecuencia, se puede comprobar que las gráficas son idénticas en módulo y fase.

Conclusiones

En esta entrada hemos conseguido un circuito sencillo que permite simular parámetros S de cualquier cuadripolo en un simulador convencional, no optimizado para el diseño en alta frecuencia. Este circuito nos proporciona una herramienta muy versátil si queremos trabajar con dispositivos que están caracterizados mediante parámetros S, o simplemente simular cuadripolos que después se vayan a medir con un analizador de redes. De esta manera, somos capaces de simular cualquier circuito en nuestro simulador habitual, sin tener que recurrir a otro tipo de simuladores.

REFERENCIAS

  1. T. Rosich; “Simulación de circuitos de RF con SPICE : parte 1”; Revista Española de Electrónica No. 515;  pp. 67-69; ISSN 0482-6396; oct 1997
  2. J. Everard; “Fundamentals of RF Circuit Design”; Wiley; IBSN 0-471-49793-2; 2001

Amplificador de Banda Ultra Ancha con Baja Ganancia y Alto Rango Dinámico

En la siguiente entrada vamos a analizar un tipo de amplificador que tiene la ventaja de funcionar en banda ultra ancha y que presenta un rango dinámico muy elevado, tanto por su baja figura de ruido como por su alto nivel de salida. El cuadripolo presentado funciona usando el principio de realimentación, si bien se sustituye la realimentación clásica de resistencias por una realimentación basada en acoplador direccional. A partir de este momento, conoceremos este tipo de configuración como “realimentación inductiva”.

En muchas ocasiones hemos tenido la necesidad de dotarnos de un amplificador que pueda cubrir un rango muy amplio de banda (en torno a varias octavas) y que mantenga el rango dinámico del dispositivo semiconductor utilizado. Los métodos clásicos de realimentar amplificadores, basados en sistemas resistivos, suelen ser muy eficientes en cobertura de banda, pero tienen el inconveniente de que las resistencias generan ruido térmico y disipan potencia, por lo que el amplificador siempre suele tener más ruido y menos nivel de salida que el transistor convencional.

El sistema inductivo presenta una ventaja considerable con respecto al resistivo convencional: un acoplador direccional es un dispositivo completamente reactivo, por lo que no presenta más pérdidas que las debidas a la resistencia parásita del acoplador, cuya contribución al ruido siempre es inferior a la de una resistencia convencional.

Pero antes de pasar a describir la aplicación, vamos a recordar en qué consiste un sistema realimentado.

SISTEMAS REALIMENTADOS

En Teoría de Sistemas, un sistema realimentado es aquel que toma una muestra de la señal de salida y la compara con la entrada para modificar, estabilizar u obtener una respuesta lo más adecuada posible. Se trata del sistema de control básico, ya que una señal y(t)=A(x(t), t)·x(t) puede variar en función de t y en función de x(t). Debemos recordar que en un sistema lineal, A=cte. Es decir, que en las condiciones básicas de trabajo, una variación de t o de x(t) no deberían influir en A. Por tanto, un amplificador lineal responderá de la forma y(t)=A·x(t), siendo A un valor constante, que es lo que denominamos ganancia.

En la mayoría de los casos, A responde de forma constante, pero al aplicar la transformada de Fourier a nuestro sistema, Y(ω)=A(ω)·X(ω). O sea, que la ganancia A(ω) depende de la frecuencia. Sin embargo, sigue respondiendo como un sistema lineal, ya que no hay dependencia de x(t).

En la mayor parte de los semiconductores usados como amplificadores, la ganancia A(ω) disminuye, del orden de 6dB/oct, por lo que conseguir la misma respuesta en un ancho de banda grande requiere de técnicas de realimentación.

Un sistema realimentado presenta un diagrama de bloques como el de la figura

Sistema realimentado clásico simple

Sistema realimentado clásico simple

La señal de salida Y(ω) se compara con la señal de entrada X(ω) a través de una red pasiva K. La respuesta en frecuencia del sistema es

Función de transferencia de un sistema realimentado

Función de transferencia de un sistema realimentado

Por tanto, la ganancia del sistema ya no es A(ω), sino que se ha reducido al dividirla por 1+K·A(ω). Si además elegimos un K·A(ω)>>1 en la zona donde queremos trabajar, podremos ver que la ganancia del sistema realimentado no depende de la zona activa A(ω), sino de la pasiva K. Si elegimos una red de realimentación K que no dependa de la pulsación ω, podremos realizar un dispositivo amplificador que no dependa del dispositivo utilizado, sino exclusivamente de la red de realimentación utilizada para obtener la ganancia

Reducción cuando la K.A>>1

Reducción cuando la K.A>>1

Al sólo depender de K, los sistemas realimentados resistivos suelen ser muy habituales para obtener respuestas en bandas ultra anchas, ya que las resistencias no dependen (salvo por sus comportamientos parásitos propios de la fabricación) de la frecuencia. Es por esto que la mayor parte de la bibliografía dedicada a los amplificadores se dedica a los realimentados resistivos, frente a otro tipo de amplificadores.

AMPLIFICADORES REALIMENTADOS RESISTIVOS

Vamos a ver brevemente cuál es el comportamiento de un amplificador realimentado resistivamente. Primero vamos a analizar el comportamiento de un dispositivo semiconductor, como un transistor bipolar (usaremos un BFG520 de NXP para hacer el análisis, con parámetros S y de ruido para Vce=5V e Ic=15mA), cuya ganancia disminuye a medida que aumenta la frecuencia un orden de 6dB/oct, como se puede ver en la siguiente gráfica.

Respuesta en frecuencia de la ganancia de un transistor bipolar

Respuesta en frecuencia de la ganancia de un transistor bipolar

En la gráfica podemos ver que el valor de la ganancia en 500MHz es de 22dB, mientras que al doble (1GHz) tenemos 16,7dB, lo que implica una caída de 5,3dB en la octava. Con estas características, se plantea el circuito realimentado siguiente

Amplificador realimentado

Amplificador realimentado

cuya ganancia, para una impedancia Z0, se puede calcular usando las expresiones

Expresiones para calcular un amplificador realimentado resistivo

Expresiones para calcular un amplificador realimentado resistivo

Para el amplificador propuesto, con R1=500Ω y R2=5Ω, tenemos que Z0=50Ω y G≈17dB. Si representamos la respuesta del transistor convencional con la del realimentado

Ganancia nominal (traza azul) frente a ganancia del amplificador realimentado.

Ganancia nominal (traza azul) frente a ganancia del amplificador realimentado (traza magenta).

Si trazamos asintóticamente una línea en la traza magenta, podremos comprobar que la curva del amplificador realimentado llega a cubrir en ancho de banda hasta la frecuencia donde la ganancia del transistor convencional coincide con la del realimentado. No obstante, como el transistor tiene caída, en la frecuencia donde se corta la asíntota la caída de ganancia es de unos 3dB.

Si calculamos el factor de ruido en el transistor convencional, podemos observar que, a 600MHz, es de 1,5dB para el convencional mientras que es de 2,5dB para el realimentado. Perdemos, por tanto, 1dB de figura de ruido. Por tanto, sacrificamos el factor de ruido para obtener una ganancia prácticamente independiente de la frecuencia en una banda muy ancha.

Si calculásemos un amplificador de 11dB, el ruido subiría en el amplificador realimentado a 3,5dB. Si esto mismo lo aplicásemos a la potencia, veríamos que en nivel de salida, en el primer caso, se pierde 1,5dB de nivel de salida, mientras que en el segundo caso perdemos 2,5dB. Esto implica reducir el rango dinámico de entrada del amplificador entre 3 y 6dB, con el fin de obtener una ganancia constante entre 11 y 17dB.

LA REALIMENTACIÓN INDUCTIVA

La realimentación inductiva consiste en introducir un elemento que compare la señal de salida hacia la entrada usando una red de bajas pérdidas. Como la realimentación es negativa (se compara la señal de salida en contrafase con la señal de entrada), el mejor dispositivo para hacer esta realimentación es el acoplador direccional.

Cuando se quiere cubrir una banda muy ancha, que empiece en frecuencias muy bajas, el método para hacer acopladores direccionales es el transformador de ferrita. De ahí el nombre de inductiva, ya que usa un sistema de acoplamiento inductivo. El esquema eléctrico de un acoplador direccional a transformador es

Acoplador direccional basado en transformador de ferrita

Acoplador direccional basado en transformador de ferrita

donde la transmisión va de la puerta 1 a la 3 (o de a 2 a a 4), la puerta acoplada respecto a la puerta 1 es 2 (o 4 respecto a 3) y la puerta aislada respecto a la puerta 1 es 4 (o 3 respecto a 2). Por tanto, si ponemos la base en la puerta 3 y el colector en la 4, cuando la señal entra por la puerta 1, pasa íntegra a la 3 (entra por base y es amplificada), y parte de la señal del colector va de la puerta 4 a la puerta 3, dependiendo del factor de acoplo, y al estar en contrafase (la fase de la puerta acoplada es π rad), se compara con la señal que viene de la puerta 1, realizando la realimentación. La señal de salida va del colector a la puerta 2 íntegra.

El factor de acoplo del acoplador direccional es función del ratio entre espiras n, siendo n el número de espiras de las bobinas interiores. Se puede calcular usando

Expresión para calcular el factor de acoplo

Expresión para calcular el factor de acoplo

Para calcular un acoplador direccional de 11dB, el ratio de transformación debe ser n≈3,5.

Planteamos entonces el esquema del siguiente amplificador

Amplificador con realimentación basada en acoplador direccional

Amplificador con realimentación basada en acoplador direccional

y representamos la ganancia de este amplificador, para n=3,5

Ganancia del transistor convencional (traza azul) frente al realimentado (traza roja)

Ganancia del transistor convencional (traza azul) frente al realimentado (traza roja)

Podemos ver que trazando la línea asintótica, ocurre lo mismo que en el amplificador realimentado resistivo. Sin embargo, el ruido del amplificador se mantiene igual: si el ruido del transistor es de 1,5dB, el ruido del realimentado es también de 1,5dB, por lo que el ruido se mantiene, mientras que para una ganancia similar en el resistivo, el ruido pasaba a ser 3,5dB. En el caso del nivel de salida, se obtiene lo mismo, debido a que hay transferencia directa de energía sin pérdidas resistivas.

Por tanto, con el acoplador direccional hemos logrado un amplificador con baja ganancia sin perder el rango dinámico que tiene el transistor, lo que muestra la bondad del sistema realimentado por acoplador direccional o realimentación inductiva.

CONCLUSIONES

En esta entrada hemos repasado los amplificadores realimentados y hemos presentado la realimentación inductiva. Hemos analizado la realimentación resistiva en un transistor bipolar BFG520, y hemos hecho una comparativa con una realimentación inductiva. Hemos comprobado que la realimentación inductiva obtiene un mejor rango dinámico cuando se quieren ganancias muy bajas.

Acopladores direccionales de transformador pueden ser encontrados en varios fabricantes de componentes pasivos, o pueden ser diseñados por el propio desarrollador ya que se pueden encontrar ferritas en casi todos los catálogos.

El amplificador puede ser utilizado en etapas de entrada donde se requieran ganancias bajas, tanto por su característica de rango dinámico como por su cobertura de banda, ya que puede abarcar una banda superior a la de una realimentación resistiva.

REFERENCIAS

  1. Rowan Gilmore, Les Besser, “Practical RF Circuit Design for Modern Wireless Systems Vol. II”, Artech House Publishers, Norwood MA (USA), 2003
  2. Patente de invención industrial ES-2107351-B1, “Dispositivo ampli cador de banda ancha”, publicada por Ángel Iglesias S.A., Madrid (Spain), 1998

El PLL digital (y II)

Hablábamos en la entrada anterior del ADPLL de primer orden. En esta entrada vamos a analizar el ADPLL de segundo orden, su función de transferencia y su respuesta.

DIAGRAMA DE BLOQUES GENERALIZADO DE UN ADPLL

En la entrada anterior pudimos ver cómo era el diagrama de bloques de un ADPLL. Como en el caso analógico, tenemos un comparador de fase, un filtro de lazo y un VCO, con sus funciones de transferencia en Transformada Z.

Diagrama de bloques del PLL digital

Diagrama de bloques del PLL digital

El filtro de lazo generalizado tiene un diagrama de bloques que es

Diagrama de bloques de un filtro de lazo digital

Diagrama de bloques de un filtro de lazo digital

Por lo que la función de transferencia del ADPLL generalizado es

Función de transferencia de un ADPLL

Función de transferencia de un ADPLL

Y como el término del denominador de la función de transferencia es (z-1) al cuadrado, tenemos un sistema de segundo orden.

Vamos a estudiar la respuesta de este sistema a una señal del tipo escalón, de la forma

Cambio de fase escalón

Cambio de fase escalón

RESPUESTA DE UN ESCALÓN A UN ADPLL DE SEGUNDO ORDEN

En el ADPLL de segundo orden tenemos que la respuesta a un escalón es:

Respuesta a un ADPLL de segundo orden

Respuesta a un ADPLL de segundo orden

Para obtener la estimación de fase, deberemos resolver la inversa de la Transformada Z de esta expresión. Para ello, lo que hacemos es dividir la transformada en suma de transformadas, obteniendo

Transformada de la estimación de fase como suma de dos transformadas

Transformada de la estimación de fase como suma de dos transformadas

Y ahora debemos poner el segundo término como suma de dos términos en z

Segundo término de segundo orden como suma de dos términos de primer orden

Segundo término de segundo orden como suma de dos términos de primer orden

Y resolviendo estos términos, obtenemos que

Resolución de la Transformada en Z de la estimación de fase e inversa

Resolución de la Transformada en Z de la estimación de fase e inversa

Y aquí obtenemos varios resultados a estudiar. Vamos a suponer, primero, que β=0. Sustituyendo en la expresión anterior, obtenemos que la estimación de fase es

Estimación de fase en el dominio temporal discreto para primer orden

Estimación de fase en el dominio temporal discreto para primer orden

que es la estimación de fase obtenida en la entrada anterior.

Vamos a estudiar el caso de que α=0. Los polos p1 y p2 quedan ahora como siguen:

Polos de la función de transferencia

Polos de la función de transferencia

y la estimación de fase queda

Resultado de la estimación de fase

Resultado de la estimación de fase

y podemos ver que se trata de una función que tiende a ser inestable, ya que el término en cuadrado de β tiende a crecer a medida que crece n, ya que el coseno es una función acotada. Por tanto, siempre tiene que haber un término α para que el ADPLL enganche.

De la expresión obtenida para la estimación de fase general, y del estudio de las condiciones particulares, hemos obtenido que α≠0. La siguiente condición que se tiene que dar para que el lazo enganche es que

Segunda condición de enganche del PLL

Segunda condición de enganche del PLL

De este modo obtenemos como resultado que

Estimación de fase del ADPLL de segundo orden bajo condiciones de enganche

Estimación de fase del ADPLL de segundo orden bajo condiciones de enganche

y si representamos esta función en el dominio de n, podremos comprobar que se trata de una función cosenoidal amortiguada.

Estimación de fase en el dominio del tiempo

Estimación de fase en el dominio del tiempo

COMPARATIVA CON EL PLL ANALÓGICO DE SEGUNDO ORDEN

Si comparamos la función de transferencia del ADPLL de segundo orden con la del PLL analógico, podremos sacar la interrelación entre la pulsación natural del lazo ωn, el coeficiente de amortiguamiento ξ y α, β, que son

Equivalente en Laplace de la estimación de fase

Equivalente en Laplace de la estimación de fase

Función de transferencia de una PLL analógico de segundo orden

Función de transferencia de una PLL analógico de segundo orden

e igualando términos obtenemos que

Relación entre los términos del ADPLL y del PLL analógico

Relación entre los términos del ADPLL y del PLL analógico

donde obtenemos una relación directa entre los diferentes términos del ADPLL y el PLL analógico.

CONCLUSIÓN

En esta entrada hemos ampliado el estudio del ADPLL al segundo orden y hemos podido comprobar las condiciones que se deben dar para que se produzca enganche, así como la interrelación entre el ADPLL digital y su equivalente en analógico

Con esta entrada finalizamos el estudio del lazo de enganche de fase en ambas tecnologías, analógica y digital. El lazo de enganche de fase es uno de los sistemas de realimentación más utilizados en Telecomunicaciones, tanto para generar señales muy estables como para demodular señales o comparar fases, y conocer su metodología ayuda enormemente al diseño de este tipo de dispositivos.

Referencias

  1. C. Joubert, J. F. Bercher, G. Baudoin, T. Divel, S. Ramet, P. Level; “Time Behavioral Model for Phase-Domain ADPLL based frequency synthesizer”; Radio and Wireless Symposium, 2006 IEEE, January 2006
  2. S. Mendel, C. Vogel;”A z-domain model and analysis of phase-domain all-digital phase-locked loops”; Proceedings of the IEEE Norchip Conference 2007, November 2007
  3. R. B. Staszewski, P. T. Balsara; “Phase-Domain All-Digital Phase-Locked Loop”; IEEE Transactions on Circuits and Systems II: Express Briefs; vol. 52, no. 3, March 2005