Archivo de la categoría: Circuitos

Estudiando líneas de transmisión slotline

Las líneas de transmisión sobre PCB son una solución óptima y de bajo coste para poder realizar propagación guiada a muy altas frecuencias. Las más populares son las líneas microstrip y las coplanares, líneas de transmisión fácilmente realizables en un circuito impreso y cuya impedancia puede ser calculada a partir de sus dimensiones. En estas líneas suelen propagarse modos TEM (transversales electromagnéticos), en los que no hay componente en la dirección de propagación. Sin embargo, existen otro tipo de líneas muy populares que también se pueden utilizar a altas frecuencias y que se conocen como slotlines (líneas de ranura). En esta entrada vamos a estudiar el comportamiento eléctrico de las líneas de ranura y algunos circuitos que se pueden hacer con ellas.

En altas frecuencias, las pistas comienzan a comportarse como líneas de transmisión distribuidas. Por tanto, es necesario conocer su impedancia para que no haya pérdidas durante la propagación.

Son muy populares las líneas microstrip y las coplanares, ya que son fácilmente implementables sobre un circuito impreso a través de la serigrafía del cobre, son económicas y se pueden calcular fácilmente. En ambas líneas, la propagación es TEM, no existiendo componentes de los campos en la dirección de propagación, y su impedancia característica Zc y longitud de onda λg dependen de las dimensiones de la línea y del substrato dieléctrico que las soporta.

Otro tipo de línea, que suele usarse en frecuencias muy elevadas, es la slotline. Esta línea consiste en una ranura sobre un plano de cobre, por la que se propaga, en este caso, un modo transversal eléctrico (concretamente el modo TE01, tal y como se ve en la siguiente figura

Fig. 1 – Modo TE01 en una slotline

El campo queda confinado cerca de la ranura para que la propagación tenga las mínimas pérdidas posibles, y como sucede en las líneas microstrip, hay una discontinuidad debida al substrato dieléctrico y al aire. Su uso como línea de transmisión suele necesitar substratos con alta constante dieléctrica (del orden de εr≥9,2), para lograr confinar los campos lo más cerca posible de la ranura, aunque se pueden usar como acoplamientos en substratos con constantes dieléctricas más bajas. De este modo, se pueden alimentar antenas planas gracias a las slotlines.

En esta entrada nos ceñiremos a su uso como líneas de transmisión (con constantes dieléctricas altas), y los circuitos de microondas que pueden realizarse con ellas, realizando un estudio sobre transiciones entre ambas tecnologías (slotline a microstrip).

ANALIZANDO LA SLOTLINE COMO LÍNEA DE TRANSMISIÓN

Siendo una línea de transmisión, la slotline tiene, como el resto de líneas, una impedancia característica Zc y una longitud de onda λs. Pero además, siendo el modo de propagación el TE01, la componente de campo que se va a propagar, en cilíndricas, es la Eφ, como se muestra en la figura

Fig. 2 – Componente Eφ de campo eléctrico

Esta componente se calcula a partir de las componentes Hr y Hz del campo magnético, considerando Z la dirección de propagación de la línea, perpendicular al campo eléctrico. De aquí obtenemos una expresión para la constante de propagación kc que es

Fig. 3 – Expresiones para la componente Eφ y para la constante de propagación kc

siendo λ0 la longitud de onda del campo propagado. Lo primero que deducimos de la expresión de kc es que vamos a encontrarnos una longitud de onda de corte λs, a partir de la cual el campo se propaga como modo TE01, ya que λ0≤λs para que kc sea real y exista propagación. Esto significa que va a haber un espesor de corte para el sustrato que va a depender de la constante dieléctrica εr. La expresión para ese espesor de corte, donde no hay propagación en forma de modo TE01,es

Fig. 4 – Espesor de corte del substrato

Con estas expresiones, Gupta (ver [1], pág. 283)  extrajo unas expresiones que permiten el cálculo de la impedancia de la línea Zc y la longitud de onda de la línea λs, que nos permitirá caracterizar la línea de transmisión, y con esa caracterización, realizar circuitos de microondas con slotlines.

ANALIZANDO UNA LÍNEA SLOTLINE

Como las líneas microstrip y las coplanares, las líneas slotline pueden ser analizadas usando un simulador electromagnético FEM. Vamos a estudiar una línea de transmisión en un substrato RT/Duroid 6010, que tiene una εr=10,8, con un espesor de 0,5mm, y una anchura de ranura de 5mil. Según los cálculos de impedancia, la línea tiene una Zc=68,4Ω y una λs=14,6mm a 10GHz. Vista en 3D, la slotline es

Fig. 5 – Slotline en 3D

La siguiente gráfica muestra los parámetros S de la línea de transmisión a 50Ω de generador y de carga.

Fig. 6 – Parámetros S de la slotline

Si representamos ahora los parámetros S en la carta de Smith

Fig. 7 – Impedancia de la slotline

donde tenemos una impedancia de 36,8-j·24,4Ω a 10GHz.

Para ver el campo propagado, usamos la visualización 3D, y representamos la corriente superficial en la ranura

Fig. 8 – Corriente superficial en la ranura, en A/m

donde se puede ver que la corriente superficial queda confinada cerca de la ranura. De esta corriente deriva el campo H y por tanto el campo E, que sólo tiene componente transversal. También se pueden ver la presencia de dos máximos, lo que indica que la distancia de la ranura coincide con la λs.

Gracias a la simulación FEM podemos analizar las líneas slotline y construir circuitos de microondas, sabiendo la caracterización que nos muestra [1].

TRANSICIONES SLOTLINE A MICROSTRIP

Como la slotline es una ranura practicada sobre un plano de cobre, se pueden hacer transiciones desde slotline a línea microstrip. Una transición típica es

Fig. 9 – Transición slotline a microstrip

Las líneas microstrip finalizan en un stub en circuito abierto λm/4, de modo que la corriente es mínima en el extremo del circuito abierto y máxima en la posición de la transición. Del mismo modo, la slotline acaba en sendos stub λs/4 en cortocircuito, siendo la corriente superficial mínima en la posición de la transición. El circuito equivalente por cada transición se puede representar de la forma

Fig. 10 – Circuito equivalente de una transición slotline a microstrip

Vamos a estudiar con el simulador electromagnético cómo se comporta una transición como la de la figura adjunta. En este caso, se trata de una transición que funciona en una banda entre 700MHz y 2,7GHz, construida sobre un substrato RT/Duroid 6010, con un espesor de 70mil, y anchuras de ranura de 25mil y microstrip de 50mil. Los parámetros S de la transición son

Fig. 11 – Parámetros S de la transición

y si representamos la corriente superficial en la transición, obtenemos

Fig. 12 – Corrientes en la transición.

donde se puede ver el acoplamiento de la corriente en la transición y la distribución sobre la slotline.

OTROS CIRCUITOS DE MICROONDAS BASADOS EN SLOTLINES

La slotline es una línea versátil. Combinada con microstrip (el plano de masa de la microstrip puede albergar las ranuras) nos permite realizar una serie de circuitos interesantes, como los mostrados en la fig. 13

Fig. 13 – Circuitos que se pueden implementar con slotline y microstrip.

El circuito de la fig. 13 (a) muestra un balum con tecnología slotline y microstrip, cortocircuitando la línea microstrip en la transición. La parte balanceada es la de la línea slotline, ya que ambos planos de tierra son puertos diferenciales, mientras que la parte no balanceada es la línea microstrip, referida al plano de masa donde se construye la slotline. Con este circuito es posible construir dobladores de frecuencia o mezcladores balanceados. Otro circuito interesante es el “rat-race” de la fig. 13 (b), donde el circuito microstrip no está cerrado, sino que se acopla a la slotline para realizar la función. En la fig. 13 (c) es posible ver un acoplador “branchline” usando una slotline y por último, el acoplador de Ronde (fig. 13 (d)), que es un circuito idóneo para ecualizar las velocidades de fase de los modos par e impar.

CONCLUSIONES

En la entrada hemos analizado la línea slotline como línea de transmisión de microondas, comparada con otras tecnologías como la microstrip y la coplanar. Además, hemos hecho un pequeño análisis del comportamiento de la línea usando un simulador electromagnético FEM, en el que hemos podido comprobar las posibilidades de análisis de la línea, tanto en su comportamiento con parámetros S como en análisis de campos, y hemos mostrado algunos de los circuitos que se pueden realizar con esta tecnología, comprobando la versatilidad de la línea de transmisión.

REFERENCIAS

  1. Gupta, K.C., et al. “Microstrip Lines and Slotlines”. 2nd. s.l. : Artech House, Inc, 1996. ISBN 0-89006-766-X.
Anuncios

Diseño de un amplificador de audio en Emisor Común con Qucs

Un blog interesante.

TRESCIENTOS BAUDIOS

El amplificador que vamos a diseñar en esta ocasión, ya fue utilizado para enseñar como funcionaba el análisis en AC de un circuito amplificador o filtro. Este análisis sirve para obtener la respuesta en frecuencia de un dispositivo en concreto.

En esta ocasión voy a utilizar el simulador Qucs, en concreto la versión 0.0.18-2. Esta versión la tenéis que descargar de la página de los desarrolladores. La versión que os comente en un artículo anterior, me ha dado problemas y he tenido que volver a instalar la anterior.

Ver la entrada original 765 palabras más

Simulando reguladores DC-DC conmutados

Los reguladores son dispositivos que convierten tensiones de DC a DC. Pueden ser de dos tipos: lineales (disipativos) y conmutados. Los primeros toman la tensión de entrada y la reducen a una tensión deseada, mientras que los segundos convierten la tensión de entrada en otra usando técnicas de conmutación, pudiendo ser la tensión de salida inferior o superior a la de entrada. Si la tensión de salida es inferior, se llaman reductores (“buck”), y si es superior, elevadores (“boost”). A diferencia de los reguladores lineales, con estos dispositivos se pueden obtener eficiencias en la transferencia de energía superiores al 80%, reduciendo la disipación en la regulación. En esta entrada vamos a proceder analizar un pequeño circuito elevador, desde una batería de 3V a 12V, y vamos a usar dos simuladores de circuitos para comprobar los resultados: LTSpice de Linear Technology Corp. y Tina-TI de Texas Instruments, ambos basados en los algoritmos SPICE.

En los circuitos electrónicos es necesario siempre alimentar con una fuente de alimentación DC. En la mayoría de las ocasiones, las tensiones de alimentación son superiores a las necesarias para alimentar las partes activas, por lo que se suelen usar reguladores lineales para conseguir la tensión adecuada. Sin embargo, hay ocasiones en las que es necesario obtener una tensión superior a la que disponemos, para alimentar el circuito.

Supongamos que tenemos un circuito que tenemos que alimentar a 12V, cuyo requisito es alimentarlo desde una batería de 3,2V. Al necesitar elevar la tensión, no se puede usar un regulador lineal, ya que la tensión de salida de éste siempre es inferior a la de la entrada. Por tanto, es necesario usar un “boost” para elevar la tensión hasta 12V.

El circuito que vamos a utilizar se puede ver en el esquema siguiente

Conversor DC-DC de 3,2V a 12V (esquema en LTSpice)

En este diseño, la conmutación se realiza a través del bipolar Q1 (BD139), gobernado por un temporizador NE555, que genera los pulsos para que el transistor conduzca. Cada vez que éste entra en conducción, la bobina L1 se carga a hasta una corriente máxima Im. Cuando el transistor deja de conducir, la corriente máxima Im a la que se ha cargado la bobina es descargada a través del diodo D1 a la carga representada por R5. El funcionamiento es en modo continuo, por tanto la corriente de la bobina nunca llega a ser nula en el ciclo de conmutación.

ANÁLISIS DEL CONVERTIDOR CON LTSpice

Uno de los simuladores de circuitos más populares es SPICE, un software basado en la resolución matricial por nudos de circuitos eléctricos y que incluye varios algoritmos de cálculo en función de la respuesta que se quiera estudiar. Los análisis típicos de SPICE son el análisis de continua DC, el análisis de alterna AC y el análisis transitorio TRAN. Mientras que con un regulador lineal, basta con realizar un análisis DC y comprobar la tensión de salida, en un regulador conmutado hay que hacer un análisis transitorio para obtener la respuesta del circuito.
LTSpice es una versión de SPICE realizada por Linear Technology, de carácter libre y con un algoritmo de cálculo transitorio optimizado para el estudio de los reguladores, ya que el principal mercado del fabricante americano son los componentes de gestión de potencia. Por tanto, incluye una gran librería de estos componentes y en su página se pueden observar varios tutoriales para analizar circuitos. El NE555 forma parte de sus librerías por lo que no hay que crear uno. Sin embargo, los modelos del transistor y del diodo deben incluirse usando la tarjeta .MODEL. Ambos semiconductores son de propósito general, pero vamos a poner aquí los modelos para poder incluirlos en el circuito.

Tarjetas .MODEL para el transistor y el diodo

Una vez incluidos ambos modelos, se realiza un análisis transitorio de 30ms. Para ver el funcionamiento, representaremos primero la caída de tensión en R5 en todo el rango del tiempo. Luego, iremos representando cada uno de los parámetros importantes del convertidor.

Para todo el tiempo de simulación, la tensión en R5 es

Tensión en la resistencia R5 en todo el rango de simulación

Podemos observar que hay un impulso amortiguado en el arranque, debido a la respuesta paso bajo que realiza la bobina L1 con el condensador C4, que es el que realizará el filtrado de las componentes de alterna. La amortiguación es prácticamente inmediata, cayendo 7V en 2,85ms. En dos oscilaciones más (a 8,55ms del arranque), la tensión se comienza a estabilizar hasta que se mantiene constante.

Vamos a ver ahora qué ciclo de trabajo se utiliza para obtener esta respuesta. El ciclo lo proporciona el NE555, por lo que estudiamos la onda a la salida de este integrado. Esta es

Señal de control a la salida del NE555

 donde se puede ver que la señal de control tiene una frecuencia de 47kHz y un ciclo de trabajo del 78%. Con esos valores, analizamos primero los resultados obtenidos en régimen permanente, que son los siguientes

Tensiones y corrientes en el convertidor

donde se miden las corrientes en la bobina L1 y la carga R5, así como las tensiones en el colector de Q1 y en la carga R5. De estos resultados se obtiene que la tensión de salida del conversor es 13,3V, con un rizado de ±60mV. La corriente en la carga es del orden de 60,5mA, lo que implica una potencia entregada a la carga de 805mW. La corriente media que se pide a la batería es la que circula por la bobina L1 y es del orden de 275mA, lo que significa que se pide a la batería una potencia de 880mW. Teniendo en cuenta la potencia entregada a la carga, el rendimiento del “boost” es η=805/880=0,92=92%, una eficiencia muy buena para un conversor DC-DC.

El transistor Q1 está sobredimensionado, se podría colocar un transistor de menos potencia para lograr la misma eficiencia (por ejemplo un BC337) y consumo. El circuito está pensado para ser usado con una batería de 3,2V y 2000mAh, por lo que a máximo consumo la batería durará 7h. Es un convertidor idóneo si no se quiere acudir a uno comercial y se quiere montar con componentes fáciles de localizar en una tienda de componentes electrónicos, ya que el NE555 y el BC337 son de uso muy común, así como los componentes pasivos.

Una de las ventajas de LTSpice sobre otros simuladores similares es que se puede ver la simulación en tiempo real, ya que actualiza los datos representados en las gráficas según va obteniendo los resultados, pudiendo detener o pausar la simulación en cualquier momento.

ANÁLISIS DEL CONVERTIDOR CON Tina-TI

Como hemos dicho, el simulador LTSpice es una versión de SPICE desarrollada por Linear Tech. para la simulación, preferentemente, de los componentes que comercializa este fabricante. Otros fabricantes, como Texas Instruments, también ponen a disposición de los diseñadores un software de simulación similar, llamado Tina-TI, que se puede encontrar en su página web y que es de distribución libre. Como LTSpice, Tina-TI incluye las librerías de componentes comercializados por Texas Inst., aparte de las librerías convencionales de componentes de propósito general, por lo que es un simulador dispuesto para el uso una vez descargado en instalado.

En este caso, nuestro diseño toma la siguiente forma

Esquema del convertidor en Tina-TI

En este caso, para estudiar las tensiones y corrientes ponemos puntos de test de corriente en serie con la bobina y la carga, así como de tensión en paralelo con el transistor y la carga. En este caso no es necesario incluir la tarjeta .MODEL ya que tanto el transistor como el diodo tienen incluidos sus modelos en la librería. La simulación, como en LTSpice, se puede visualizar en tiempo real, pudiendo también detenerla o pausarla.

Los resultados obtenidos con Tina-TI son los siguientes

Resultados obtenidos con Tina-TI

donde se puede observar una muy ligera variación en los valores de tensión y corriente, una desviación del orden de un 1,2% que es un valor muy aceptable. Por tanto, Tina-TI también es un simulador adecuado para analizar este tipo de circuitos.

CONCLUSIONES

El objetivo de la entrada era no sólo mostrar un diseño sencillo de “boost” con componentes de propósito general, sino además comparar dos simuladores de código libre y que son bastante potentes, puestos a disposición del ingeniero junto con unas librerías y actualizaciones periódicas de las mismas que permiten aumentar la capacidad del simulador. Para mi gusto, llevo trabajando más tiempo con LTSpice y es más intuitivo y de fácil manejo, aparte de que permite una jerarquía esquemática para los subcircuitos más sencilla. Su manual de ayuda también es bastante claro. Tina-TI no ofrece la posibilidad de jerarquía en el esquemático, pero tiene una librería de más de 20.000 componentes, además de macros ya realizadas para circuitos integrados del fabricante. Incluye además la posibilidad de trazar los resultados con instrumentos como el osciloscopio, multímetro o analizador de señal.

En cuanto a las presentaciones, LTSpice es más cómodo a la hora de representar los resultados, ya que basta con poner el puntero sobre el punto a testar: si es un nodo, se mide tensión, y si es un componente, corriente, mientras que Tina-TI debe de incluir componentes de test. De este modo, el esquemático de LTSpice queda limpio de componentes de test, aunque en éste también se pueden incluir. En ambos, sin embargo, se sigue echando de menos la posibilidad de realizar cálculos con los resultados obtenidos, como ocurre con otros simuladores más potentes. Sin embargo, son herramientas muy útiles para analizar sistemas electrónicos, y por tanto, recomendables para el diseñador.

REFERENCIAS

  1. Martínez García, Salvador; Gualda Gil, J. Andrés., “Electrónica de Potencia: Componentes, topologías y equipos”, Madrid : Thomson Editores Spain, 2006. ISBN 978-84-9732-397-0
  2. Getting started with LTSpice
  3. Soluciones para LTSpice
  4. Getting started with Tina-TI
  5. Documentos técnicos y blogs para Tina-TI

(Las referencias 2 a 5 contienen enlace para acceder a las páginas de Linear Technology y Texas Instruments)

Ajustando filtros mediante el método de Dishal

filtroEn Telecomunicaciones es usual tener que usar filtros para poder eliminar frecuencias indeseadas. Estos filtros suelen ser de bandas muy estrechas y se suelen utilizar técnicas de líneas acopladas, por lo que en la mayor parte de los diseños se debe recurrir a la simulación electromagnética para verificar el diseño. La simulación electromagnética, aunque es una potente herramienta, suele ser lenta si se desea optimizar mediante algoritmos convencionales. Aunque estos algoritmos están incluidos en la mayor parte de los simuladores electromagnéticos, ya sea en 2D o en 3D, si la respuesta del filtro está muy alejada de la deseada, la optimización suele ser muy lenta, por lo que se requieren otros métodos que permitan ajustar previamente antes de realizar una optimización final. Uno de los métodos es el de Dishal, en el que se puede sintonizar un filtro de varias secciones a base de sintonizar cada una de ellas. En esta entrada, sintonizaremos un filtro microstrip de tipo HAIRPIN, de resonadores λ/2 acoplados, usando un simulador electromagnético como HPMomentum.

Los filtros son los dispositivos más comunes que se usan en Telecomunicaciones. Eliminan las frecuencias interferentes y el ruido, pudiendo procesar la señal recibida o transmitida de una forma más eficiente. Tienen bastante literatura para su diseño, y existen muchas combinaciones para obtener su respuesta. Sin embargo, es uno de los dispositivos en los que es más difícil obtener un óptimo resultado. Su sintonía física requiere habilidad y entrenamiento, y su sintonía en simulación paciencia y tiempo. Sin embargo, existen técnicas que permiten la optimización de un filtro a base de usar metodologías de ajuste que permita acercarse a los parámetros ideales del filtros. Una de metodología que permite sintonizar un filtro de forma sencilla es el método de Dishal y es el que vamos a usar para sintonizar un filtro paso banda HAIRPIN para la banda de subida de LTE-UHF.

Esta metodología permite realizar el ajuste de un filtro paso banda acoplado sintonizando tanto de los factores de calidad Qi y Qo que necesita el filtro para ser cargado, como de los factores de acoplamiento Mi,i+1 que acoplarán las diferentes etapas, de forma independiente. Estos parámetros son calculados a través de los parámetros del filtro prototipo, que se pueden obtener ya sea a través de las tablas presentes en cualquier libro de diseño de filtros como en programas de cálculo como MatLab. Las expresiones para calcular los parámetros fundamentales de un filtro paso banda acoplado son

formulas

donde fh y fl son las frecuencias de corte de la banda pasante, f0 es la frecuencia central y FBW el ancho de banda fraccional. Los valores g0..gn son los coeficientes del filtro prototipo normalizado. Con estos valores obtendremos los parámetros de acoplamiento de nuestro filtro.

FILTRO PASO BANDA HAIRPIN DE 5 SECCIONES

Vamos a desarrollar un filtro paso banda en tecnología microstrip, usando una configuración HAIRPIN de resonadores λ/2 acoplados. En este filtro, la línea resonante es una línea λ/2, que se acopla al siguiente resonador mediante la sección λ/4. O más concretamente, entre un 85 y un 95% de λ/4. Su denominación HAIRPIN es debida a que tiene forma física de peine. Nuestro filtro va a tener las siguientes características fundamentales:

  • Banda pasante : 791÷821MHz (banda de UHF para LTE de subida)
  • Número de secciones: 5
  • Tipo de filtro: Chebychev 1
  • Factor de rizado: 0,1dB
  • Impedancias de generador y carga: 50Ω

Con estos valores acudimos a las tablas para obtener los coeficientes g0..g6 del filtro prototipo y aplicando las expresiones anteriores obtenemos que

  • Qi=Qo=30,81
  • M12=M45=0,0297
  • M23=M34=0,0226

Con estos coeficientes se pueden calcular las impedancias Zoe y Zoo que definirán las líneas acopladas, así como la posición de los feeds de entrada y salida. En este último caso, esta posición se puede obtener a partir de

feed

Como soporte vamos a usar un substrato Rogers, el RO3006, que tiene una εr=6,15, usando un espesor de 0,76mm y 1oz de cobre (35μm). Con este substrato, el filtro obtenido es:

filter

y con estos valores, pasaremos a la simulación.

SIMULACIÓN DEL FILTRO PASO BANDA

Usando HPMomentum, el simulador electromagnético de ADS, vamos a poder simular la respuesta de este filtro, que se puede ver en la siguiente gráfica

Resultado de la simulación del filtro

Resultado de la simulación del filtro

que, la verdad sea dicha, no se nos parece ni por asomo a lo que pretendíamos realizar. El filtro está cerca de la frecuencia f0, tiene un ancho de banda de 30MHz, pero ni está centrado ni el rizado es, ni de lejos, 0,1dB. Por tanto, habrá que recurrir a una sintonía usando el método de Dishal y así llevar el filtro a la frecuencia deseada, con el acoplamiento deseado.

Buscando la posición del alimentador

Buscando la posición del alimentador

AJUSTANDO EL Q EXTERNO

En primer lugar vamos a ajustar los factores de calidad de los resonadores de generador y de carga, que tienen que ser de 30,81. Como ambos son iguales, la sintonía obtenida servirá para los dos. Para ajustar los Qi y Qo, tendremos que buscar la posición adecuada de la alimentación para que el valor sea el deseado.

Para calcular el Qext, se evalúa el coeficiente de reflexión del resonador y se obtiene su retardo de grupo. El factor de calidad será

qext Cuando hacemos la primera simulación y representamos Qext, obtenemos

qext2

donde se puede comprobar que ni el filtro está centrado ni su factor de calidad es el deseado. Para centrar el filtro, aumentamos la distancia entre las líneas en 1,1mm y recortamos las líneas resonantes en 0,34mm. De este modo, obtenemos

qext2_2

en el que ya están centradas las líneas, siendo el Qext de 37,28. Ahora aumentamos la distancia del feed al extremo de la pista en 0,54mm y obtenemos el Qext deseado.

qext2_3

Ya tenemos centrado el filtro y con el Qext requerido. Ahora tocaría ajustar los acoplamientos.

AJUSTE DE LOS ACOPLAMIENTOS

Para ajustar los acoplamientos, primero separamos el feed unos 0,2mm de la línea, y hacemos un espejo de la misma para que quede como sigue

coup_1

En este caso, para medir el acoplamiento usamos los picos que salen en la transmisión (S21), y aplicamos la expresión

coup_2

El resultado de la simulación, para el primer acoplo, es

coup_3

que como podemos comprobar está en el valor requerido.

En el caso del segundo acoplo

coup_4

que también está cerca de su valor requerido. Por tanto, con los cambios obtenidos, simulamos el filtro total y obtenemos

Filtro después de la primera sintonía

Filtro después de la primera sintonía

que ya se acerca al filtro deseado.

REITERANDO LA SINTONÍA

Si reiteramos sobre la sintonía, podremos llegar a mejorar el filtro hasta los valores que deseemos. Así, disminuyendo el Qext obtenemos

Disminución del Qext

Disminución del Qext

que supone ya una mejora importante. Jugando ahora con los acoplamientos, disminuyéndolos, llegamos a obtener

filt_3

Ajuste de los acoplamientos

que podemos dar por válido. Por tanto, el método de Dishal nos ha permitido, a partir de los parámetros calculados, ajustar el filtro hasta obtener las características deseadas.

CONCLUSIONES

Hemos analizado el método de Dishal como herramienta para el ajuste y sintonización de un filtro paso banda de 5 secciones, con óptimos resultados. La sencillez del método permite ajustar los principales parámetros de forma independiente, de manera que el ajuste final u optimización sean más sencillas, cosa de agradecer en simuladores electromagnéticos, que requieren de potencia de cálculo y tiempo de simulación. Vemos que el método, realizado paso a paso, nos permite ir ajustando las características hasta obtener el resultado deseado, por lo que podemos concluir que es un método muy útil en sintonización de filtros, tanto en discretos como en distribuidos, y que bien usado permite acercarse lo suficientemente al resultado final como para que la optimización electromagnética sea innecesaria.

REFERENCIAS

  1. Zverev, Anatol I., “Handbook of Filter Synthesys”, Hoboken, New Jersey : John Wiley & Sons Inc., 1967. ISBN 978-0-471-74942-4.

Análisis estadísticos usando el método de Monte Carlo (y III)

imagesCon esta entrada cerramos el capítulo dedicado al análisis de Monte Carlo. En las dos entradas anteriores vimos cómo se podía usar éste método para analizar los eventos que pueden ocurrir en un dispositivo electrónico, sino también lo que sucede cuando tenemos variables correladas y cuando sometemos al circuito a un ajuste posproducción. Estos análisis son estimables, puesto que nos permiten conocer previamente el funcionamiento de nuestro circuito y tomar decisiones acerca del diseño, elegir las topologías y componentes adecuados y realizar un primer diseño en el que se optimice al máximo el comportamiento del nuestro circuito. En esta entrada vamos a ver un ejemplo, incluyendo un factor que suele ser importante y que tampoco se suele tener en cuenta en las simulaciones, y que es el análisis térmico. En este caso, utilizaremos un amplificador de potencia diseñado para trabajar en conmutación, que alimenta a una carga. El objetivo es encontrar el componente más sensible en el amplificador y poder elegir la topología o componente adecuados para que el circuito siga funcionando en todas las condiciones definidas.

Hemos visto lo útil que puede llegar a ser el análisis de Monte Carlo para elegir topologías y componentes, e incluso para definir el ajuste que tenemos que hacer en el caso de que se produzca defectivo durante un proceso de fabricación. Este análisis reduce el tiempo de desarrollo físico, porque proporciona de antemano una información importante de cómo se va a comportar nuestro diseño, antes de montarlo y evaluarlo. No obstante, hay que llegar más allá, rizando el rizo, y añadiendo el comportamiento térmico.

Los dispositivos electrónicos están no sólo sometidos a variaciones de valores nominales, debidas a su estructura física, sino que también presentan variaciones térmicas en función de la temperatura a la que estén sometidos en su funcionamiento. Los dispositivos que más suelen sufrir estas variaciones térmicas suelen ser aquellos que disipan elevadas cantidades de potencia, como las fuentes de alimentación, los microprocesadores y los amplificadores. Las variaciones térmicas desgastan el componente y comprometen su vida útil, reduciendo su vida media cuando trabajan al límite. Si hacemos estos análisis previamente, podemos marcar las pautas para lograr el mejor funcionamiento posible y obtener un diseño que garantice una vida media suficiente.

Estudio sobre un amplificador de potencia

A continuación vamos a estudiar el efecto producido sobre un amplificador de potencia en clase E, como el de la figura.

Amplificador clase E con MOSFET

Amplificador clase E con MOSFET

Este amplificador proporciona a una carga de 6+j⋅40Ω, a 1,5MHz, una potencia de AC de 23W, con una eficiencia del 88% sobre la potencia DC entregada por la fuente de alimentación. El MOSFET, que es el elemento que más se calienta cuando está disipando la potencia de conmutación, que es del orden de 2,5W, es el elemento más crítico del sistema, ya que hay que garantizar una extracción del calor que haga que su unión no se rompa por superar la temperatura de unión. El valor máximo que puede alcanzar dicha temperatura es 175ºC, pero se establece una temperatura de seguridad de 150ºC. Por tanto, el diseño realizado debe de ser capaz de soportar cualquier variación de potencia AC que pueda superar la temperatura máxima, no sólo en condiciones normales (a temperatura ambiente de 25ºC), sino incluyendo las variaciones que se puedan producir en el consumo del dispositivo activo debido a las tolerancias de los componentes.

En este circuito, los componentes más críticos, aparte de la dispersión que presenta el propio MOSFET, son los componentes pasivos. Estos componentes forman parte de la red de adaptación, que transmite la máxima energía desde la alimentación a la carga y provocan una variación en la respuesta del drenador que influye en su consumo. Siendo potencias considerables, con valores superiores a 10W, la variación de carga provocará variaciones importantes en la potencia disipada en el MOSFET y su estudio nos mostrará las necesidades para la extracción del calor generado en el MOSFET por efecto Joule.

Análisis estadístico en condiciones normales

Lo primero que tenemos es que analizar el circuito en condiciones normales de laboratorio (25ºC, 760mmHg, 50-70% de humedad relativa) y ver las variaciones que presenta, sólo por tolerancias. Consideramos tolerancias gaussianas de ±5% en valores límite, y analizamos exclusivamente las tolerancias en estas condiciones, para un 500 eventos. De esta manera podemos ver cómo afectan los componentes a la respuesta del circuito a través de la siguiente gráfica

Potencia

Potencia de DC y potencia en la carga, frente a número de eventos

El histograma azul representa la potencia de DC suministrada por la carga, cuyo valor central máximo es de 26,4W, mientras que el histograma rojo es la potencia transferida a la carga, cuyo valor central máximo es de 23,2W. Esto representa un 87,9% de eficiencia en la entrega de potencia. La desviación estándar de la potencia de carga es ±1,6%, lo que significa una tolerancia de ±6,5% en los valores límite. Bajo estas condiciones, podemos representar la potencia disipada del MOSFET, que se puede ver en la siguiente gráfica

Potencia disipada en el MOSFET vs. número de eventos

Potencia disipada en el MOSFET, frente al número de eventos

donde obtenemos una potencia media de 2,9W y una desviación estándar de 1,2W. Esto significa que la potencia máxima puede llegar a ser del orden de 7,8W.

Si calculamos con estos valores la diferencia entre la temperatura de la unión y la ambiente, teniendo en cuenta que las resistencias térmicas Rth-JC=1,7K/W y Rth-CH=0,7K/W, y usando un disipador con una resistencia térmica en condiciones de ventilación no forzada de Rth-HA=10K/W, se puede obtener, para una Tamb=25ºC

temp

Por tanto, a 25ºC, con una refrigeración no forzada, la temperatura de la unión está a 118,95ºC en el valor límite de potencia consumida por el MOSFET, proporcionándonos un margen suficiente sobre los 150ºC máximos a los que la unión se rompe.

Análisis estadístico para tres temperaturas

El análisis anterior nos garantiza un correcto funcionamiento en condiciones normales, pero, ¿qué ocurre cuando subimos o bajamos la temperatura? Vamos a analizar bajo tres condiciones de temperatura: 0ºC, 25ºC y 50ºC, y para representarlo usaremos un histograma multidimensional, en el que agruparemos todos los eventos sin discernir temperaturas. De este modo obtenemos

Potencia de DC y potencia en la carga, frente a número de eventos y temperatura

Potencia de DC y potencia en la carga, frente a número de eventos y temperatura

donde la potencia media entregada a la carga, en todas las condiciones, es 22,6W, para todas las condiciones térmicas, y la eficiencia media es del 86,6%, cubriendo el rango de temperaturas entre 0ºC y 50ºC.

Analizando ahora la potencia disipada por el MOSFET, en las mismas condiciones

temp_mos_power

Potencia disipada en el MOSFET, frente al número de eventos y la temperatura

donde calculando el valor medio, se obtiene 2,9W, con un máximo de 7,8W. Estos valores, similares al calculado anteriormente, muestran que la máxima temperatura de la unión va a ser 143,95ºC, a 7ºC de la temperatura máxima de seguridad de 150ºC, y por tanto a 32ºC de la temperatura máxima de la unión.

Por tanto, podemos concluir del análisis que el circuito diseñado, bajo las condiciones de temperatura ambiente de 0ºC a 50ºC, y siempre con un disipador con una resistencia térmica en ventilación no forzada de Rth-HA=10K/W, presentará un funcionamiento óptimo para el rango de potencia de carga.

CONCLUSIÓN

Con esta entrada finalizamos el capítulo dedicado al análisis usando el método de Monte Carlo. Con los análisis realizados, hemos cubierto la optimización de características a través de diferentes topologías, el ajuste posproducción en un proceso de montaje industrial y el análisis térmico para comprobar los límites de seguridad en los que trabaja un circuito de potencia. No obstante, el método proporciona muchas más posibilidades que se pueden explorar a partir de estos sencillos experimentos.

REFERENCIAS

  1. Castillo Ron, Enrique, “Introducción a la Estadística Aplicada”, Santander, NORAY, 1978, ISBN 84-300-0021-6.
  2. Peña Sánchez de Rivera, Daniel, “Fundamentos de Estadística”, Madrid,  Alianza Editorial, 2001, ISBN 84-206-8696-4.
  3. Kroese, Dirk P., y otros, “Why the Monte Carlo method is so important today”, 2014, WIREs Comp Stat, Vol. 6, págs. 386-392, DOI: 10.1002/wics.1314.

Análisis estadísticos usando el método de Monte Carlo (II)

Art02_fig01En la anterior entrada mostramos con una serie de ejemplos simples cómo funciona el método de Monte Carlo para realizar análisis estadísticos. En esta entrada vamos a profundizar un poco más, haciendo un análisis estadístico más profundo sobre un sistema algo más complejo, analizando una serie de variables de salida y estudiando sus resultados desde una serie de ópticas que resultarán bastante útiles. La ventaja que tiene la simulación es que podemos realizar una generación aleatoria de variables, y además, podemos establecer una correlación de esas variables para conseguir distintos efectos al analizar el funcionamiento de un sistema. Así, cualquier sistema no sólo se puede analizar estadísticamente mediante una generación aleatoria de entradas, sino que podemos vincular esa generación aleatoria a análisis de lotes o fallos en la producción, así como su recuperación post-producción.

Los circuitos que vimos en la anterior entrada eran circuitos muy sencillos que permitían ver cómo funciona la asignación de variables aleatorias y el resultado obtenido cuando estas variables aleatorias forman parte de un sistema más complejo. Con este análisis, podíamos comprobar un funcionamiento y hasta proponer correcciones que, por sí solas, limitasen las variaciones estadísticas del sistema final.

En este caso, vamos a estudiar el efecto dispersivo que tienen las tolerancias sobre uno de los circuitos más difíciles de conseguir su funcionamiento de forma estable: el filtro electrónico. Partiremos de un filtro electrónico de tipo paso banda, sintonizado a una determinada frecuencia y con una anchura de banda de paso y rechazo determinadas, y realizaremos varios análisis estadísticos sobre el mismo, para comprobar su respuesta cuando se somete a las tolerancias de los componentes.

DISEÑO DEL FILTRO PASO BANDA

Vamos a plantear el diseño de un filtro paso banda, centrado a una frecuencia de 37,5MHz, con un ancho de banda de 7MHz para unas pérdidas de retorno mayores que 14dB, y un ancho de banda de rechazo de 19MHz, con atenuación mayor de 20dB. Calculando el filtro, se obtienen 3 secciones, con el siguiente esquema

Filtro paso banda de tres secciones

Filtro paso banda de tres secciones

Con los valores de componentes calculados, se buscan valores estándar que puedan hacer la función de transferencia de este filtro, cuya respuesta es

Respuesta en frecuencia del filtro paso banda

Respuesta en frecuencia del filtro paso banda

donde podemos ver que la frecuencia central es 37,5MHz, que las pérdidas de retorno están por debajo de 14dB en ±3,5MHz de la frecuencia central y que el ancho de banda de rechazo es de 18,8MHz, con 8,5MHz a la izquierda de la frecuencia central y 10,3MHz a la derecha de la frecuencia central.

Bien, ya tenemos diseñado nuestro filtro, y ahora vamos a hacer un primer análisis estadístico, considerando que las tolerancias de los condensadores son ±5%, y que las inducciones son ajustables. Además, no vamos a indicar correlación en ninguna variable, pudiendo tomar cada variable un valor aleatorio independiente de la otra.

ANÁLISIS ESTADÍSTICO DEL FILTRO SIN CORRELACIÓN ENTRE VARIABLES

Como vimos en la entrada anterior, cuando tenemos variables aleatorias vamos a tener dispersión en la salida, así que lo óptimo es poner unos límites según los cuales podremos considerar el filtro válido, y a partir de ahí analizar cuál es su respuesta. Para ello se recurre al análisis YIELD, que es un análisis que, usando el algoritmo de Monte Carlo, nos permite comprobar el rendimiento o efectividad de nuestro diseño. Para realizar este análisis hay que incluir las especificaciones según las cuales se puede dar el filtro por válido. Las especificaciones elegidas son unas pérdidas de retorno superiores a 13,5dB entre 35÷40MHz, con una reducción de 2MHz en la anchura de banda, y una atenuación mayor de 20dB por debajo de 29MHz y por encima de 48MHz. Haciendo el análisis estadístico obtenemos

Análisis estadístico del filtro. Variables sin correlación.

Análisis estadístico del filtro. Variables sin correlación.

que, sinceramente, es un desastre: sólo el 60% de los posibles filtros generados por variables con un ±5% de tolerancia podrían considerarse filtros válidos. El resto no serían considerados como válidos en un control de calidad, lo que significaría un 40% de material defectivo que se devolvería al proceso de producción.

De la gráfica se puede ver, además, que son las pérdidas de retorno las principales responsables de que exista tan bajo rendimiento. ¿Qué podemos hacer para mejorar este valor? En este caso, tenemos cuatro variables aleatorias. Sin embargo, dos de ellas son del mismo valor (15pF), que cuando son montadas en un proceso productivo, suelen pertenecer al mismo lote de fabricación. Si estas variables no presentan ninguna correlación, las variables pueden tomar valores completamente dispares. Cuando las variables no presentan correlación, tendremos la siguiente gráfica

Condensadores C1 y C3 sin correlación

Condensadores C1 y C3 sin correlación

Sin embargo, cuando se están montando componentes de un mismo lote de fabricación, las tolerancias que presentan los componentes varían siempre hacia el mismo sitio, por tanto hay correlación entre dichas variables.

ANÁLISIS ESTADÍSTICO DEL FILTRO CON CORRELACIÓN ENTRE VARIABLES

Cuando usamos la correlación entre variables, estamos reduciendo el entorno de variación. En este caso, lo que analizamos no es un proceso totalmente aleatorio, sino lotes de fabricación en los cuales se producen las variaciones. En este caso, hemos establecido la correlación entre las variables C1 y C3, que son del mismo valor nominal y que pertenecen la mismo lote de fabricación, por lo que ahora tendremos

Condensadores C1 y C3 con correlación

Condensadores C1 y C3 con correlación

donde podemos ver que la tendencia a la variación en cada lote es la misma. Estableciendo entonces la correlación entre ambas variables, estudiamos el rendimiento efectivo de nuestro filtro y obtenemos

Análisis estadístico con C1, C2 variables correladas

Análisis estadístico con C1, C2 variables correladas

que parece todavía más desastroso. Pero ¿es así? Tenemos que tener en cuenta que la correlación entre variables nos ha permitido analizar lotes completos de fabricación, mientras que en el análisis anterior no se podía discernir los lotes. Por tanto, lo que aquí hemos obtenido son 26 procesos de fabricación completos exitosos, frente al caso anterior que no permitía discernir nada. Por tanto, esto lo que nos muestra es que de 50 procesos completos de fabricación, obtendríamos que 26 procesos serían exitosos.

Sin embargo, 24 procesos completos tendrían que ser devueltos a la producción con todo el lote. Lo que sigue siendo, realmente, un desastre y el Director de Producción estaría echando humo. Pero vamos a darle una alegría y a justificar lo que ha intentado siempre que no exista: el ajuste post-producción.

ANÁLISIS ESTADÍSTICO CON AJUSTE POST-PRODUCCIÓN

Como ya he dicho, a estas alturas el Director de Producción está pensando en descuartizarte poco a poco, sin embargo, queda un as en la manga, recordando que las inducciones las hemos puesto de modo que sean ajustables. ¿Tendrá esto éxito? Para ello hacemos un nuevo análisis, dando valores variables en un entorno de ±10% sobre los valores nominales, y activamos el proceso de ajuste post-producción en el análisis y ¡voilà! Aun teniendo un defectivo antes del ajuste muy elevado, logramos recuperar el 96% de los filtros dentro de los valores que se habían elegido como válidos

Análisis estadístico con ajuste post-producción

Análisis estadístico con ajuste post-producción

Bueno, hemos ganado que el Director de Producción no nos corte en cachitos, ya que el proceso nos está indicando que podemos recuperar la práctica totalidad de los lotes, eso sí, con el ajuste, por lo que con este análisis podemos mostrar no sólo el defectivo sino la capacidad de recuperación del mismo.

Podemos representar cómo han variado las inducciones (en este caso las correspondientes a las resonancias en serie) para poder analizar cuál es la sensibilidad del circuito frente a las variaciones más críticas. Este análisis permite establecer un patrón de ajuste para reducir el tiempo en el que se debe de tener un filtro exitoso.

Análisis de los patrones de ajuste en las inducciones de las resonancias serie

Análisis de los patrones de ajuste en las inducciones de las resonancias serie

Así, con este tipo de análisis, realizado en el mismo momento del diseño, es posible tomar decisiones que fijen los patrones posteriores de la fabricación de los equipos y sistemas, pudiendo establecer patrones fijos de ajuste post-producción sencillos al conocer de antemano la respuesta estadística del filtro diseñado. Una cosa muy clara que he tenido siempre, es que cuando no he hecho este análisis, el resultado es tan desastroso como muestra la estadística, así que mi recomendación como diseñador es dedicarle tiempo a aprender cómo funciona y hacerle antes de que le digas a Producción que tu diseño está acabado.

CONCLUSIONES

En esta entrada hemos querido mostrar un paso más en las posibilidades del análisis estadístico usando Monte Carlo, avanzando en las posibilidades que muestra el método a la hora de hacer estudios estadísticos. El algoritmo nos proporciona resultados y nos permite fijar condicionantes para realizar diversos análisis y poder optimizar más si se puede cualquier sistema. Hemos acudido hasta a un ajuste post-producción, a fin de calmar la ira de nuestro Director de Producción, que ya estaba echando humo con el defectivo que le estábamos proporcionando. En la siguiente entrada, abundaremos un poco más en el método con otro ejemplo que nos permita ver más posibilidades en el algoritmo.

REFERENCIAS

  1. Castillo Ron, Enrique, “Introducción a la Estadística Aplicada”, Santander, NORAY, 1978, ISBN 84-300-0021-6.
  2. Peña Sánchez de Rivera, Daniel, “Fundamentos de Estadística”, Madrid,  Alianza Editorial, 2001, ISBN 84-206-8696-4.
  3. Kroese, Dirk P., y otros, “Why the Monte Carlo method is so important today”, 2014, WIREs Comp Stat, Vol. 6, págs. 386-392, DOI: 10.1002/wics.1314.

 

Análisis estadísticos usando el método de Monte Carlo (I)

imagesCuando nos enfrentamos a cualquier diseño electrónico, por lo general disponemos de métodos deterministas que permiten el cálculo de lo que estamos diseñando, de modo que podemos prever los parámetros que vamos a encontrar en la medida física de cualquier dispositivo o sistema. Estos cálculos previos facilitan el desarrollo y normalmente los resultados suelen coincidir en gran medida con la predicción. Sin embargo, sabemos que todo aquello que creemos o fabriquemos siempre está sometido a tolerancias. Y esas tolerancias provocan variaciones en los resultados que muchas veces no se pueden analizar de forma sencilla, sin una herramienta de cálculo potente. En 1944, Newmann y Ulam desarrollaron un método estadístico no determinista que denominaron Método de Monte Carlo. En las siguientes entradas vamos a analizar el uso de este potente método para la predicción de posibles tolerancias en circuitos, sobre todo cuando son fabricados de forma industrial.

En un sistema o proceso, el resultado final es consecuencia de las variables de entrada. Estas generan una respuesta que puede ser determinada tanto si el sistema es lineal como si es no lineal. A la relación entre la respuesta o salida del sistema y las variables de entrada la denominamos función de transferencia, y su conocimiento nos permite evaluar cualquier resultado en función de la excitación de entrada.

Sin embargo, hay que tener en cuenta que las variables de entrada son variables aleatorias, con su propia función de distribución, debido a que están sometidas a procesos estocásticos, aunque su comportamiento es predecible gracias a la teoría de la probabilidad. Por ejemplo, cuando describimos una medida de cualquier tipo, solemos representar su valor nominal o medio, así como el entorno de error asociado en el que esa magnitud medida puede estar. Esto nos permite limitar el entorno en el cual la magnitud es correcta y decidir cuándo la magnitud se comporta de modo incorrecto.

Durante muchos años, después de haber aprendido a transformar con éxito los resultados obtenidos mediante simulación en resultados físicos reales, con comportamientos predecibles y extrayendo conclusiones válidas, me he dado cuenta que en la mayoría de las ocasiones la simulación se reduce a obtener un resultado apetecido, sin profundizar en absoluto en ese resultado. Sin embargo, la mayoría de los simuladores están dotados de algoritmos estadísticos útiles que, correctamente utilizados, permiten al usuario de la aplicación obtener una serie de datos que puede usar para el futuro y permiten predecir el comportamiento de cualquier sistema, o al menos, analizar qué es lo que se puede producir.

Sin embargo, esos métodos que los simuladores incluyen nos suelen ser utilizados. Ya sea por falta de conocimiento de patrones estadísticos, ya sea por desconocimiento de cómo usar esos patrones. Por tanto, en esta serie de entradas vamos a desgranar el método de Monte Carlo que podemos encontrar en un simulador de circuitos e descubrir un potencial importante que es desconocido para muchos de los usuarios de los simuladores de circuitos.

LOS COMPONENTES COMO VARIABLES ALEATORIAS

Los circuitos electrónicos están formados por componentes electrónicos simples, pero que tienen un comportamiento estadístico, debido a los procesos de fabricación. No obstante, los fabricantes de componentes delimitan correctamente los valores nominales y el entorno de error en que se mueven. Así, un fabricante de resistencias no sólo publica sus valores nominales y dimensiones. También publica los entornos de error en los que esa resistencia varía, el comportamiento con la temperatura, el comportamiento con la tensión, etc. Todos estos parámetros, convenientemente analizados, proporcionan una información importante que, bien analizada dentro de una potente herramienta de cálculo como es el simulador, permite predecir el comportamiento de circuito total.

En este caso se va a analizar exclusivamente el entorno de error en el valor nominal. En una resistencia, cuando el fabricante define el valor nominal (en este caso, vamos a suponer 1kΩ) y expresa que tiene una tolerancia de ±5%, quiere decir que el valor de la resistencia puede estar comprendido entre 950Ω y 1,05kΩ. En el caso de un transistor, su ganancia de corriente β puede tomar un valor entre 100 y 600 (por ejemplo, el BC817 de NXP), por lo que puede haber una variación de corriente de colector importante e incontrolable. Por tanto, conociendo estos datos, podemos analizar el comportamiento estadístico de un circuito eléctrico gracias a la rutina de Monte Carlo.

Analicemos primero la resistencia: hemos dicho que la resistencia tiene una tolerancia de ±5%. Entonces, vamos a analizar usando el simulador el comportamiento de esta resistencia usando la rutina de Monte Carlo. A priori, desconocemos qué función densidad de probabilidad tiene la resistencia, aunque lo más habitual es una función de tipo gaussiano, cuya expresión es ya conocida

normal

donde μ es el valor medio y σ² es la varianza. Analizando con el simulador, mediante el método de Monte Carlo y para 2000 muestras, se puede obtener una representación de la variación del valor nominal de la resistencia, obteniendo un histograma como el que se muestra en la figura siguiente

Distribución de los valores de la resistencia usando el análisis de Monte Carlo

Distribución de los valores de la resistencia usando el análisis de Monte Carlo

El algoritmo de Monte Carlo introduce valor en la variable cuya distribución corresponde a una gaussiana, pero los valores que toma son en todo momento aleatorios. Si esas 2000 muestras se tomasen en 5 procesos de 400 muestras cada uno, seguiríamos teniendo una tendencia a la gaussiana, pero sus distribuciones serían diferentes

Distribuciones gaussianas con varios lotes

Distribuciones gaussianas con varios lotes

Por tanto, trabajando convenientemente con las variables aleatorias, se puede extraer un estudio completo de la fiabilidad del diseño realizado, así como de la sensibilidad que tiene cada una de las variables que se utilizan. En el siguiente ejemplo, vamos a proceder al análisis del punto de operación de un transistor bipolar convencional, cuya variación de β está comprendida entre 100 y 600, con un valor medio de 350 (comprendida β con una distribución gaussiana), polarizado con resistencias con una tolerancia nominal de ±5%, y estudiando la variación de la corriente de colector en 100 muestras.

ANÁLISIS DEL COMPORTAMIENTO ESTADÍSTICO DE UN BJT EN DC

Para estudiar el comportamiento de un circuito de polarización con transistor bipolar, partimos del circuito como el de la figura

Circuito de polarización de un BJT

Circuito de polarización de un BJT

donde las resistencias tienen tolerancias totales de ±5% y el transistor tiene una variación de β entre 100 y 600, con un valor nominal de 350. El punto de operación es Ic=1,8mA, Vce=3,2V. Haciendo el análisis de Monte Carlo para 100 muestras, obtenemos el siguiente resultado

Variación de la corriente del BJT en función de las variables aleatorias

Variación de la corriente del BJT en función de las variables aleatorias

Por la forma de la gráfica, se puede comprobar que el resultado converge a una gaussiana, donde el valor medio predominante es Ic=1,8mA, con una tolerancia de ±28%. Supongamos ahora que hacemos el mismo barrido que antes, en varios lotes de proceso, de 100 muestras cada uno. El resultado obtenido es

Variación de la corriente del BJT para varios lotes

Variación de la corriente del BJT para varios lotes

donde podemos ver que en cada lote tendremos una curva que converge a una gaussiana. En este caso, la gaussiana tiene un valor medio μ=1,8mA y una varianza σ²=7%. De este modo, podemos analizar cada proceso como un análisis estadístico global como por lotes. Supongamos que ahora β es una variable aleatoria con una función de distribución uniforme entre 100 y 600. Analizando sólo para las 100 muestras, se obtiene la curva

Distribución con b uniforme

Distribución con BETA uniforme

y se puede observar que la tendencia de la corriente es a converger a una distribución uniforme, aumentando el rango de tolerancia de la corriente y aumentando la probabilidad en los extremos de su valor. Por tanto, también podemos estudiar cómo se comporta el circuito cuando tenemos distintas funciones de distribución gobernando cada una de las variables.

Visto que, con el método de Monte Carlo podemos analizar el comportamiento en términos de tolerancias de un circuito complejo, también del mismo modo nos ayudará a estudiar cómo podemos corregir esos resultados. Por tanto, a lo largo de las entradas vamos a profundizar cada vez más en el potencial del método y lo que se puede conseguir con él.

CORRIGIENDO LAS TOLERANCIAS

En el circuito básico que hemos utilizado, al caracterizar la β del transistor como una variable uniforme, hemos aumentado la probabilidad de haya posibles valores de corriente que caigan en valores indeseados. Esto es uno de los puntos más problemáticos de los transistores bipolares y de efecto campo, las variaciones de sus ganancias en corriente. Vamos a ver, con un sencillo ejemplo, qué es lo que ocurre cuando usamos un circuito de corrección de la variación de β, como puede ser el circuito clásico de autopolarización por emisor

Circuito con autopolarización por emisor

Circuito con autopolarización por emisor

Usando este circuito, volvemos a hacer un análisis de Monte Carlo y lo comparamos con el análisis obtenido en el caso anterior,pero usando 1000 muestras. El resultado obtenido es

Resultados con ambos circuitos

Resultados con ambos circuitos

donde se puede ver que se ha incrementado la probabilidad en valores en torno a los 2mA, reduciendo la densidad de probabilidad en valores bajos de corriente y estrechando la distribución. Por tanto, el método de Monte Carlo no sólo es un método que nos permite analizar el comportamiento de un circuito cuando se somete a una estadística, sino que nos permitirá optimizar nuestro circuito y ajustarlo a los valores límite deseados. Usado convenientemente, es una potente herramienta de cálculo que mejorará el conocimiento de nuestros circuitos.

CONCLUSIONES

En esta primera entrada de una serie dedicada al método de Monte Carlo, en la que hemos querido presentar el método y su utilidad. Como hemos podido ver en el ejemplo, el uso del método de Monte Carlo proporciona datos de mucha utilidad, sobre todo si deseamos conocer cuáles son las limitaciones y variaciones del circuito que estamos analizando. Por otro lado, nos permite mejorar éste a través de los estudios estadísticos, además de fijar los patrones para la verificación del mismo en un proceso productivo.

En las siguientes entradas profundizaremos más en el método, realizando un estudio más exhaustivo del método a través de un circuito concreto de uno de mis proyectos más recientes, analizando cuáles son los resultados esperados y las diferentes simulaciones que se pueden realizar usando el método de Monte Carlo, como las de caso peor, sensibilidad, y optimización post-producción.

REFERENCIAS

  1. Castillo Ron, Enrique, “Introducción a la Estadística Aplicada”, Santander, NORAY, 1978, ISBN 84-300-0021-6.
  2. Peña Sánchez de Rivera, Daniel, “Fundamentos de Estadística”, Madrid,  Alianza Editorial, 2001, ISBN 84-206-8696-4.
  3. Kroese, Dirk P., y otros, “Why the Monte Carlo method is so important today”, 2014, WIREs Comp Stat, Vol. 6, págs. 386-392, DOI: 10.1002/wics.1314.