SHARENG Divulgación

Inicio » Banda ancha

Category Archives: Banda ancha

Amplificador de Banda Ultra Ancha con Baja Ganancia y Alto Rango Dinámico

En la siguiente entrada vamos a analizar un tipo de amplificador que tiene la ventaja de funcionar en banda ultra ancha y que presenta un rango dinámico muy elevado, tanto por su baja figura de ruido como por su alto nivel de salida. El cuadripolo presentado funciona usando el principio de realimentación, si bien se sustituye la realimentación clásica de resistencias por una realimentación basada en acoplador direccional. A partir de este momento, conoceremos este tipo de configuración como “realimentación inductiva”.

En muchas ocasiones hemos tenido la necesidad de dotarnos de un amplificador que pueda cubrir un rango muy amplio de banda (en torno a varias octavas) y que mantenga el rango dinámico del dispositivo semiconductor utilizado. Los métodos clásicos de realimentar amplificadores, basados en sistemas resistivos, suelen ser muy eficientes en cobertura de banda, pero tienen el inconveniente de que las resistencias generan ruido térmico y disipan potencia, por lo que el amplificador siempre suele tener más ruido y menos nivel de salida que el transistor convencional.

El sistema inductivo presenta una ventaja considerable con respecto al resistivo convencional: un acoplador direccional es un dispositivo completamente reactivo, por lo que no presenta más pérdidas que las debidas a la resistencia parásita del acoplador, cuya contribución al ruido siempre es inferior a la de una resistencia convencional.

Pero antes de pasar a describir la aplicación, vamos a recordar en qué consiste un sistema realimentado.

SISTEMAS REALIMENTADOS

En Teoría de Sistemas, un sistema realimentado es aquel que toma una muestra de la señal de salida y la compara con la entrada para modificar, estabilizar u obtener una respuesta lo más adecuada posible. Se trata del sistema de control básico, ya que una señal y(t)=A(x(t), t)·x(t) puede variar en función de t y en función de x(t). Debemos recordar que en un sistema lineal, A=cte. Es decir, que en las condiciones básicas de trabajo, una variación de t o de x(t) no deberían influir en A. Por tanto, un amplificador lineal responderá de la forma y(t)=A·x(t), siendo A un valor constante, que es lo que denominamos ganancia.

En la mayoría de los casos, A responde de forma constante, pero al aplicar la transformada de Fourier a nuestro sistema, Y(ω)=A(ω)·X(ω). O sea, que la ganancia A(ω) depende de la frecuencia. Sin embargo, sigue respondiendo como un sistema lineal, ya que no hay dependencia de x(t).

En la mayor parte de los semiconductores usados como amplificadores, la ganancia A(ω) disminuye, del orden de 6dB/oct, por lo que conseguir la misma respuesta en un ancho de banda grande requiere de técnicas de realimentación.

Un sistema realimentado presenta un diagrama de bloques como el de la figura

Sistema realimentado clásico simple

Sistema realimentado clásico simple

La señal de salida Y(ω) se compara con la señal de entrada X(ω) a través de una red pasiva K. La respuesta en frecuencia del sistema es

Función de transferencia de un sistema realimentado

Función de transferencia de un sistema realimentado

Por tanto, la ganancia del sistema ya no es A(ω), sino que se ha reducido al dividirla por 1+K·A(ω). Si además elegimos un K·A(ω)>>1 en la zona donde queremos trabajar, podremos ver que la ganancia del sistema realimentado no depende de la zona activa A(ω), sino de la pasiva K. Si elegimos una red de realimentación K que no dependa de la pulsación ω, podremos realizar un dispositivo amplificador que no dependa del dispositivo utilizado, sino exclusivamente de la red de realimentación utilizada para obtener la ganancia

Reducción cuando la K.A>>1

Reducción cuando la K.A>>1

Al sólo depender de K, los sistemas realimentados resistivos suelen ser muy habituales para obtener respuestas en bandas ultra anchas, ya que las resistencias no dependen (salvo por sus comportamientos parásitos propios de la fabricación) de la frecuencia. Es por esto que la mayor parte de la bibliografía dedicada a los amplificadores se dedica a los realimentados resistivos, frente a otro tipo de amplificadores.

AMPLIFICADORES REALIMENTADOS RESISTIVOS

Vamos a ver brevemente cuál es el comportamiento de un amplificador realimentado resistivamente. Primero vamos a analizar el comportamiento de un dispositivo semiconductor, como un transistor bipolar (usaremos un BFG520 de NXP para hacer el análisis, con parámetros S y de ruido para Vce=5V e Ic=15mA), cuya ganancia disminuye a medida que aumenta la frecuencia un orden de 6dB/oct, como se puede ver en la siguiente gráfica.

Respuesta en frecuencia de la ganancia de un transistor bipolar

Respuesta en frecuencia de la ganancia de un transistor bipolar

En la gráfica podemos ver que el valor de la ganancia en 500MHz es de 22dB, mientras que al doble (1GHz) tenemos 16,7dB, lo que implica una caída de 5,3dB en la octava. Con estas características, se plantea el circuito realimentado siguiente

Amplificador realimentado

Amplificador realimentado

cuya ganancia, para una impedancia Z0, se puede calcular usando las expresiones

Expresiones para calcular un amplificador realimentado resistivo

Expresiones para calcular un amplificador realimentado resistivo

Para el amplificador propuesto, con R1=500Ω y R2=5Ω, tenemos que Z0=50Ω y G≈17dB. Si representamos la respuesta del transistor convencional con la del realimentado

Ganancia nominal (traza azul) frente a ganancia del amplificador realimentado.

Ganancia nominal (traza azul) frente a ganancia del amplificador realimentado (traza magenta).

Si trazamos asintóticamente una línea en la traza magenta, podremos comprobar que la curva del amplificador realimentado llega a cubrir en ancho de banda hasta la frecuencia donde la ganancia del transistor convencional coincide con la del realimentado. No obstante, como el transistor tiene caída, en la frecuencia donde se corta la asíntota la caída de ganancia es de unos 3dB.

Si calculamos el factor de ruido en el transistor convencional, podemos observar que, a 600MHz, es de 1,5dB para el convencional mientras que es de 2,5dB para el realimentado. Perdemos, por tanto, 1dB de figura de ruido. Por tanto, sacrificamos el factor de ruido para obtener una ganancia prácticamente independiente de la frecuencia en una banda muy ancha.

Si calculásemos un amplificador de 11dB, el ruido subiría en el amplificador realimentado a 3,5dB. Si esto mismo lo aplicásemos a la potencia, veríamos que en nivel de salida, en el primer caso, se pierde 1,5dB de nivel de salida, mientras que en el segundo caso perdemos 2,5dB. Esto implica reducir el rango dinámico de entrada del amplificador entre 3 y 6dB, con el fin de obtener una ganancia constante entre 11 y 17dB.

LA REALIMENTACIÓN INDUCTIVA

La realimentación inductiva consiste en introducir un elemento que compare la señal de salida hacia la entrada usando una red de bajas pérdidas. Como la realimentación es negativa (se compara la señal de salida en contrafase con la señal de entrada), el mejor dispositivo para hacer esta realimentación es el acoplador direccional.

Cuando se quiere cubrir una banda muy ancha, que empiece en frecuencias muy bajas, el método para hacer acopladores direccionales es el transformador de ferrita. De ahí el nombre de inductiva, ya que usa un sistema de acoplamiento inductivo. El esquema eléctrico de un acoplador direccional a transformador es

Acoplador direccional basado en transformador de ferrita

Acoplador direccional basado en transformador de ferrita

donde la transmisión va de la puerta 1 a la 3 (o de a 2 a a 4), la puerta acoplada respecto a la puerta 1 es 2 (o 4 respecto a 3) y la puerta aislada respecto a la puerta 1 es 4 (o 3 respecto a 2). Por tanto, si ponemos la base en la puerta 3 y el colector en la 4, cuando la señal entra por la puerta 1, pasa íntegra a la 3 (entra por base y es amplificada), y parte de la señal del colector va de la puerta 4 a la puerta 3, dependiendo del factor de acoplo, y al estar en contrafase (la fase de la puerta acoplada es π rad), se compara con la señal que viene de la puerta 1, realizando la realimentación. La señal de salida va del colector a la puerta 2 íntegra.

El factor de acoplo del acoplador direccional es función del ratio entre espiras n, siendo n el número de espiras de las bobinas interiores. Se puede calcular usando

Expresión para calcular el factor de acoplo

Expresión para calcular el factor de acoplo

Para calcular un acoplador direccional de 11dB, el ratio de transformación debe ser n≈3,5.

Planteamos entonces el esquema del siguiente amplificador

Amplificador con realimentación basada en acoplador direccional

Amplificador con realimentación basada en acoplador direccional

y representamos la ganancia de este amplificador, para n=3,5

Ganancia del transistor convencional (traza azul) frente al realimentado (traza roja)

Ganancia del transistor convencional (traza azul) frente al realimentado (traza roja)

Podemos ver que trazando la línea asintótica, ocurre lo mismo que en el amplificador realimentado resistivo. Sin embargo, el ruido del amplificador se mantiene igual: si el ruido del transistor es de 1,5dB, el ruido del realimentado es también de 1,5dB, por lo que el ruido se mantiene, mientras que para una ganancia similar en el resistivo, el ruido pasaba a ser 3,5dB. En el caso del nivel de salida, se obtiene lo mismo, debido a que hay transferencia directa de energía sin pérdidas resistivas.

Por tanto, con el acoplador direccional hemos logrado un amplificador con baja ganancia sin perder el rango dinámico que tiene el transistor, lo que muestra la bondad del sistema realimentado por acoplador direccional o realimentación inductiva.

CONCLUSIONES

En esta entrada hemos repasado los amplificadores realimentados y hemos presentado la realimentación inductiva. Hemos analizado la realimentación resistiva en un transistor bipolar BFG520, y hemos hecho una comparativa con una realimentación inductiva. Hemos comprobado que la realimentación inductiva obtiene un mejor rango dinámico cuando se quieren ganancias muy bajas.

Acopladores direccionales de transformador pueden ser encontrados en varios fabricantes de componentes pasivos, o pueden ser diseñados por el propio desarrollador ya que se pueden encontrar ferritas en casi todos los catálogos.

El amplificador puede ser utilizado en etapas de entrada donde se requieran ganancias bajas, tanto por su característica de rango dinámico como por su cobertura de banda, ya que puede abarcar una banda superior a la de una realimentación resistiva.

REFERENCIAS

  1. Rowan Gilmore, Les Besser, “Practical RF Circuit Design for Modern Wireless Systems Vol. II”, Artech House Publishers, Norwood MA (USA), 2003
  2. Patente de invención industrial ES-2107351-B1, “Dispositivo ampli cador de banda ancha”, publicada por Ángel Iglesias S.A., Madrid (Spain), 1998