SHARENG Divulgación

Inicio » Análisis » Análisis estadísticos usando el método de Monte Carlo (y III)

Análisis estadísticos usando el método de Monte Carlo (y III)

imagesCon esta entrada cerramos el capítulo dedicado al análisis de Monte Carlo. En las dos entradas anteriores vimos cómo se podía usar éste método para analizar los eventos que pueden ocurrir en un dispositivo electrónico, sino también lo que sucede cuando tenemos variables correladas y cuando sometemos al circuito a un ajuste posproducción. Estos análisis son estimables, puesto que nos permiten conocer previamente el funcionamiento de nuestro circuito y tomar decisiones acerca del diseño, elegir las topologías y componentes adecuados y realizar un primer diseño en el que se optimice al máximo el comportamiento del nuestro circuito. En esta entrada vamos a ver un ejemplo, incluyendo un factor que suele ser importante y que tampoco se suele tener en cuenta en las simulaciones, y que es el análisis térmico. En este caso, utilizaremos un amplificador de potencia diseñado para trabajar en conmutación, que alimenta a una carga. El objetivo es encontrar el componente más sensible en el amplificador y poder elegir la topología o componente adecuados para que el circuito siga funcionando en todas las condiciones definidas.

Hemos visto lo útil que puede llegar a ser el análisis de Monte Carlo para elegir topologías y componentes, e incluso para definir el ajuste que tenemos que hacer en el caso de que se produzca defectivo durante un proceso de fabricación. Este análisis reduce el tiempo de desarrollo físico, porque proporciona de antemano una información importante de cómo se va a comportar nuestro diseño, antes de montarlo y evaluarlo. No obstante, hay que llegar más allá, rizando el rizo, y añadiendo el comportamiento térmico.

Los dispositivos electrónicos están no sólo sometidos a variaciones de valores nominales, debidas a su estructura física, sino que también presentan variaciones térmicas en función de la temperatura a la que estén sometidos en su funcionamiento. Los dispositivos que más suelen sufrir estas variaciones térmicas suelen ser aquellos que disipan elevadas cantidades de potencia, como las fuentes de alimentación, los microprocesadores y los amplificadores. Las variaciones térmicas desgastan el componente y comprometen su vida útil, reduciendo su vida media cuando trabajan al límite. Si hacemos estos análisis previamente, podemos marcar las pautas para lograr el mejor funcionamiento posible y obtener un diseño que garantice una vida media suficiente.

Estudio sobre un amplificador de potencia

A continuación vamos a estudiar el efecto producido sobre un amplificador de potencia en clase E, como el de la figura.

Amplificador clase E con MOSFET

Amplificador clase E con MOSFET

Este amplificador proporciona a una carga de 6+j⋅40Ω, a 1,5MHz, una potencia de AC de 23W, con una eficiencia del 88% sobre la potencia DC entregada por la fuente de alimentación. El MOSFET, que es el elemento que más se calienta cuando está disipando la potencia de conmutación, que es del orden de 2,5W, es el elemento más crítico del sistema, ya que hay que garantizar una extracción del calor que haga que su unión no se rompa por superar la temperatura de unión. El valor máximo que puede alcanzar dicha temperatura es 175ºC, pero se establece una temperatura de seguridad de 150ºC. Por tanto, el diseño realizado debe de ser capaz de soportar cualquier variación de potencia AC que pueda superar la temperatura máxima, no sólo en condiciones normales (a temperatura ambiente de 25ºC), sino incluyendo las variaciones que se puedan producir en el consumo del dispositivo activo debido a las tolerancias de los componentes.

En este circuito, los componentes más críticos, aparte de la dispersión que presenta el propio MOSFET, son los componentes pasivos. Estos componentes forman parte de la red de adaptación, que transmite la máxima energía desde la alimentación a la carga y provocan una variación en la respuesta del drenador que influye en su consumo. Siendo potencias considerables, con valores superiores a 10W, la variación de carga provocará variaciones importantes en la potencia disipada en el MOSFET y su estudio nos mostrará las necesidades para la extracción del calor generado en el MOSFET por efecto Joule.

Análisis estadístico en condiciones normales

Lo primero que tenemos es que analizar el circuito en condiciones normales de laboratorio (25ºC, 760mmHg, 50-70% de humedad relativa) y ver las variaciones que presenta, sólo por tolerancias. Consideramos tolerancias gaussianas de ±5% en valores límite, y analizamos exclusivamente las tolerancias en estas condiciones, para un 500 eventos. De esta manera podemos ver cómo afectan los componentes a la respuesta del circuito a través de la siguiente gráfica

Potencia

Potencia de DC y potencia en la carga, frente a número de eventos

El histograma azul representa la potencia de DC suministrada por la carga, cuyo valor central máximo es de 26,4W, mientras que el histograma rojo es la potencia transferida a la carga, cuyo valor central máximo es de 23,2W. Esto representa un 87,9% de eficiencia en la entrega de potencia. La desviación estándar de la potencia de carga es ±1,6%, lo que significa una tolerancia de ±6,5% en los valores límite. Bajo estas condiciones, podemos representar la potencia disipada del MOSFET, que se puede ver en la siguiente gráfica

Potencia disipada en el MOSFET vs. número de eventos

Potencia disipada en el MOSFET, frente al número de eventos

donde obtenemos una potencia media de 2,9W y una desviación estándar de 1,2W. Esto significa que la potencia máxima puede llegar a ser del orden de 7,8W.

Si calculamos con estos valores la diferencia entre la temperatura de la unión y la ambiente, teniendo en cuenta que las resistencias térmicas Rth-JC=1,7K/W y Rth-CH=0,7K/W, y usando un disipador con una resistencia térmica en condiciones de ventilación no forzada de Rth-HA=10K/W, se puede obtener, para una Tamb=25ºC

temp

Por tanto, a 25ºC, con una refrigeración no forzada, la temperatura de la unión está a 118,95ºC en el valor límite de potencia consumida por el MOSFET, proporcionándonos un margen suficiente sobre los 150ºC máximos a los que la unión se rompe.

Análisis estadístico para tres temperaturas

El análisis anterior nos garantiza un correcto funcionamiento en condiciones normales, pero, ¿qué ocurre cuando subimos o bajamos la temperatura? Vamos a analizar bajo tres condiciones de temperatura: 0ºC, 25ºC y 50ºC, y para representarlo usaremos un histograma multidimensional, en el que agruparemos todos los eventos sin discernir temperaturas. De este modo obtenemos

Potencia de DC y potencia en la carga, frente a número de eventos y temperatura

Potencia de DC y potencia en la carga, frente a número de eventos y temperatura

donde la potencia media entregada a la carga, en todas las condiciones, es 22,6W, para todas las condiciones térmicas, y la eficiencia media es del 86,6%, cubriendo el rango de temperaturas entre 0ºC y 50ºC.

Analizando ahora la potencia disipada por el MOSFET, en las mismas condiciones

temp_mos_power

Potencia disipada en el MOSFET, frente al número de eventos y la temperatura

donde calculando el valor medio, se obtiene 2,9W, con un máximo de 7,8W. Estos valores, similares al calculado anteriormente, muestran que la máxima temperatura de la unión va a ser 143,95ºC, a 7ºC de la temperatura máxima de seguridad de 150ºC, y por tanto a 32ºC de la temperatura máxima de la unión.

Por tanto, podemos concluir del análisis que el circuito diseñado, bajo las condiciones de temperatura ambiente de 0ºC a 50ºC, y siempre con un disipador con una resistencia térmica en ventilación no forzada de Rth-HA=10K/W, presentará un funcionamiento óptimo para el rango de potencia de carga.

CONCLUSIÓN

Con esta entrada finalizamos el capítulo dedicado al análisis usando el método de Monte Carlo. Con los análisis realizados, hemos cubierto la optimización de características a través de diferentes topologías, el ajuste posproducción en un proceso de montaje industrial y el análisis térmico para comprobar los límites de seguridad en los que trabaja un circuito de potencia. No obstante, el método proporciona muchas más posibilidades que se pueden explorar a partir de estos sencillos experimentos.

REFERENCIAS

  1. Castillo Ron, Enrique, “Introducción a la Estadística Aplicada”, Santander, NORAY, 1978, ISBN 84-300-0021-6.
  2. Peña Sánchez de Rivera, Daniel, “Fundamentos de Estadística”, Madrid,  Alianza Editorial, 2001, ISBN 84-206-8696-4.
  3. Kroese, Dirk P., y otros, “Why the Monte Carlo method is so important today”, 2014, WIREs Comp Stat, Vol. 6, págs. 386-392, DOI: 10.1002/wics.1314.
Anuncios

Responder

Introduce tus datos o haz clic en un icono para iniciar sesión:

Logo de WordPress.com

Estás comentando usando tu cuenta de WordPress.com. Cerrar sesión / Cambiar )

Imagen de Twitter

Estás comentando usando tu cuenta de Twitter. Cerrar sesión / Cambiar )

Foto de Facebook

Estás comentando usando tu cuenta de Facebook. Cerrar sesión / Cambiar )

Google+ photo

Estás comentando usando tu cuenta de Google+. Cerrar sesión / Cambiar )

Conectando a %s

A %d blogueros les gusta esto: