SHARENG Divulgación

Inicio » Análisis » Análisis estadísticos usando el método de Monte Carlo (II)

Análisis estadísticos usando el método de Monte Carlo (II)

Art02_fig01En la anterior entrada mostramos con una serie de ejemplos simples cómo funciona el método de Monte Carlo para realizar análisis estadísticos. En esta entrada vamos a profundizar un poco más, haciendo un análisis estadístico más profundo sobre un sistema algo más complejo, analizando una serie de variables de salida y estudiando sus resultados desde una serie de ópticas que resultarán bastante útiles. La ventaja que tiene la simulación es que podemos realizar una generación aleatoria de variables, y además, podemos establecer una correlación de esas variables para conseguir distintos efectos al analizar el funcionamiento de un sistema. Así, cualquier sistema no sólo se puede analizar estadísticamente mediante una generación aleatoria de entradas, sino que podemos vincular esa generación aleatoria a análisis de lotes o fallos en la producción, así como su recuperación post-producción.

Los circuitos que vimos en la anterior entrada eran circuitos muy sencillos que permitían ver cómo funciona la asignación de variables aleatorias y el resultado obtenido cuando estas variables aleatorias forman parte de un sistema más complejo. Con este análisis, podíamos comprobar un funcionamiento y hasta proponer correcciones que, por sí solas, limitasen las variaciones estadísticas del sistema final.

En este caso, vamos a estudiar el efecto dispersivo que tienen las tolerancias sobre uno de los circuitos más difíciles de conseguir su funcionamiento de forma estable: el filtro electrónico. Partiremos de un filtro electrónico de tipo paso banda, sintonizado a una determinada frecuencia y con una anchura de banda de paso y rechazo determinadas, y realizaremos varios análisis estadísticos sobre el mismo, para comprobar su respuesta cuando se somete a las tolerancias de los componentes.

DISEÑO DEL FILTRO PASO BANDA

Vamos a plantear el diseño de un filtro paso banda, centrado a una frecuencia de 37,5MHz, con un ancho de banda de 7MHz para unas pérdidas de retorno mayores que 14dB, y un ancho de banda de rechazo de 19MHz, con atenuación mayor de 20dB. Calculando el filtro, se obtienen 3 secciones, con el siguiente esquema

Filtro paso banda de tres secciones

Filtro paso banda de tres secciones

Con los valores de componentes calculados, se buscan valores estándar que puedan hacer la función de transferencia de este filtro, cuya respuesta es

Respuesta en frecuencia del filtro paso banda

Respuesta en frecuencia del filtro paso banda

donde podemos ver que la frecuencia central es 37,5MHz, que las pérdidas de retorno están por debajo de 14dB en ±3,5MHz de la frecuencia central y que el ancho de banda de rechazo es de 18,8MHz, con 8,5MHz a la izquierda de la frecuencia central y 10,3MHz a la derecha de la frecuencia central.

Bien, ya tenemos diseñado nuestro filtro, y ahora vamos a hacer un primer análisis estadístico, considerando que las tolerancias de los condensadores son ±5%, y que las inducciones son ajustables. Además, no vamos a indicar correlación en ninguna variable, pudiendo tomar cada variable un valor aleatorio independiente de la otra.

ANÁLISIS ESTADÍSTICO DEL FILTRO SIN CORRELACIÓN ENTRE VARIABLES

Como vimos en la entrada anterior, cuando tenemos variables aleatorias vamos a tener dispersión en la salida, así que lo óptimo es poner unos límites según los cuales podremos considerar el filtro válido, y a partir de ahí analizar cuál es su respuesta. Para ello se recurre al análisis YIELD, que es un análisis que, usando el algoritmo de Monte Carlo, nos permite comprobar el rendimiento o efectividad de nuestro diseño. Para realizar este análisis hay que incluir las especificaciones según las cuales se puede dar el filtro por válido. Las especificaciones elegidas son unas pérdidas de retorno superiores a 13,5dB entre 35÷40MHz, con una reducción de 2MHz en la anchura de banda, y una atenuación mayor de 20dB por debajo de 29MHz y por encima de 48MHz. Haciendo el análisis estadístico obtenemos

Análisis estadístico del filtro. Variables sin correlación.

Análisis estadístico del filtro. Variables sin correlación.

que, sinceramente, es un desastre: sólo el 60% de los posibles filtros generados por variables con un ±5% de tolerancia podrían considerarse filtros válidos. El resto no serían considerados como válidos en un control de calidad, lo que significaría un 40% de material defectivo que se devolvería al proceso de producción.

De la gráfica se puede ver, además, que son las pérdidas de retorno las principales responsables de que exista tan bajo rendimiento. ¿Qué podemos hacer para mejorar este valor? En este caso, tenemos cuatro variables aleatorias. Sin embargo, dos de ellas son del mismo valor (15pF), que cuando son montadas en un proceso productivo, suelen pertenecer al mismo lote de fabricación. Si estas variables no presentan ninguna correlación, las variables pueden tomar valores completamente dispares. Cuando las variables no presentan correlación, tendremos la siguiente gráfica

Condensadores C1 y C3 sin correlación

Condensadores C1 y C3 sin correlación

Sin embargo, cuando se están montando componentes de un mismo lote de fabricación, las tolerancias que presentan los componentes varían siempre hacia el mismo sitio, por tanto hay correlación entre dichas variables.

ANÁLISIS ESTADÍSTICO DEL FILTRO CON CORRELACIÓN ENTRE VARIABLES

Cuando usamos la correlación entre variables, estamos reduciendo el entorno de variación. En este caso, lo que analizamos no es un proceso totalmente aleatorio, sino lotes de fabricación en los cuales se producen las variaciones. En este caso, hemos establecido la correlación entre las variables C1 y C3, que son del mismo valor nominal y que pertenecen la mismo lote de fabricación, por lo que ahora tendremos

Condensadores C1 y C3 con correlación

Condensadores C1 y C3 con correlación

donde podemos ver que la tendencia a la variación en cada lote es la misma. Estableciendo entonces la correlación entre ambas variables, estudiamos el rendimiento efectivo de nuestro filtro y obtenemos

Análisis estadístico con C1, C2 variables correladas

Análisis estadístico con C1, C2 variables correladas

que parece todavía más desastroso. Pero ¿es así? Tenemos que tener en cuenta que la correlación entre variables nos ha permitido analizar lotes completos de fabricación, mientras que en el análisis anterior no se podía discernir los lotes. Por tanto, lo que aquí hemos obtenido son 26 procesos de fabricación completos exitosos, frente al caso anterior que no permitía discernir nada. Por tanto, esto lo que nos muestra es que de 50 procesos completos de fabricación, obtendríamos que 26 procesos serían exitosos.

Sin embargo, 24 procesos completos tendrían que ser devueltos a la producción con todo el lote. Lo que sigue siendo, realmente, un desastre y el Director de Producción estaría echando humo. Pero vamos a darle una alegría y a justificar lo que ha intentado siempre que no exista: el ajuste post-producción.

ANÁLISIS ESTADÍSTICO CON AJUSTE POST-PRODUCCIÓN

Como ya he dicho, a estas alturas el Director de Producción está pensando en descuartizarte poco a poco, sin embargo, queda un as en la manga, recordando que las inducciones las hemos puesto de modo que sean ajustables. ¿Tendrá esto éxito? Para ello hacemos un nuevo análisis, dando valores variables en un entorno de ±10% sobre los valores nominales, y activamos el proceso de ajuste post-producción en el análisis y ¡voilà! Aun teniendo un defectivo antes del ajuste muy elevado, logramos recuperar el 96% de los filtros dentro de los valores que se habían elegido como válidos

Análisis estadístico con ajuste post-producción

Análisis estadístico con ajuste post-producción

Bueno, hemos ganado que el Director de Producción no nos corte en cachitos, ya que el proceso nos está indicando que podemos recuperar la práctica totalidad de los lotes, eso sí, con el ajuste, por lo que con este análisis podemos mostrar no sólo el defectivo sino la capacidad de recuperación del mismo.

Podemos representar cómo han variado las inducciones (en este caso las correspondientes a las resonancias en serie) para poder analizar cuál es la sensibilidad del circuito frente a las variaciones más críticas. Este análisis permite establecer un patrón de ajuste para reducir el tiempo en el que se debe de tener un filtro exitoso.

Análisis de los patrones de ajuste en las inducciones de las resonancias serie

Análisis de los patrones de ajuste en las inducciones de las resonancias serie

Así, con este tipo de análisis, realizado en el mismo momento del diseño, es posible tomar decisiones que fijen los patrones posteriores de la fabricación de los equipos y sistemas, pudiendo establecer patrones fijos de ajuste post-producción sencillos al conocer de antemano la respuesta estadística del filtro diseñado. Una cosa muy clara que he tenido siempre, es que cuando no he hecho este análisis, el resultado es tan desastroso como muestra la estadística, así que mi recomendación como diseñador es dedicarle tiempo a aprender cómo funciona y hacerle antes de que le digas a Producción que tu diseño está acabado.

CONCLUSIONES

En esta entrada hemos querido mostrar un paso más en las posibilidades del análisis estadístico usando Monte Carlo, avanzando en las posibilidades que muestra el método a la hora de hacer estudios estadísticos. El algoritmo nos proporciona resultados y nos permite fijar condicionantes para realizar diversos análisis y poder optimizar más si se puede cualquier sistema. Hemos acudido hasta a un ajuste post-producción, a fin de calmar la ira de nuestro Director de Producción, que ya estaba echando humo con el defectivo que le estábamos proporcionando. En la siguiente entrada, abundaremos un poco más en el método con otro ejemplo que nos permita ver más posibilidades en el algoritmo.

REFERENCIAS

  1. Castillo Ron, Enrique, “Introducción a la Estadística Aplicada”, Santander, NORAY, 1978, ISBN 84-300-0021-6.
  2. Peña Sánchez de Rivera, Daniel, “Fundamentos de Estadística”, Madrid,  Alianza Editorial, 2001, ISBN 84-206-8696-4.
  3. Kroese, Dirk P., y otros, “Why the Monte Carlo method is so important today”, 2014, WIREs Comp Stat, Vol. 6, págs. 386-392, DOI: 10.1002/wics.1314.

 

Anuncios

Responder

Introduce tus datos o haz clic en un icono para iniciar sesión:

Logo de WordPress.com

Estás comentando usando tu cuenta de WordPress.com. Cerrar sesión / Cambiar )

Imagen de Twitter

Estás comentando usando tu cuenta de Twitter. Cerrar sesión / Cambiar )

Foto de Facebook

Estás comentando usando tu cuenta de Facebook. Cerrar sesión / Cambiar )

Google+ photo

Estás comentando usando tu cuenta de Google+. Cerrar sesión / Cambiar )

Conectando a %s

A %d blogueros les gusta esto: