Archivos Mensuales: noviembre 2014

Tin whiskers growing on Zamak alloys


From today, some interesting entries for readers will be published in English. This first entry will explain the physical reasons because tin whiskers are generated on surfaces of copper or zinz, and methods to prevent this phenomenon.

Whiskers are a small tin wires, growing due to differences in surface tension at the binding surface of the metals, when an electrochemical plating is applied. In 2006, the author and his R&D team had to research this phenomenon. Researchers found the functionality of one product is spoiled along the time. Particularly, when it was stored more than three months. Then, we decided to study this phenomenon, to understand the causes because it produces and find possible solutions to prevent in future developments.


Occurrence of uncontrolled phenomena is important for the Research & Development in any factory. Most of the time, private companies applied more the Development than the Research in their products. However, there are many times where the development has drawbacks and phenomena that are not in the company “know how”. These phenomena enable R&D teams to acquire new knowledge and apply it in the future.

In 2006, my R&D team found a phenomenon affecting the proper operation of one popular product. It was completely unknown to us, but experienced by others: whiskers. It occurred in one important product that we were developing. Because this product was the most important in our catalog, forcing us to do a deeper research, to find a solution, because there were stored material which might be defective. So my R&D team got to work to solve this phenomenon.

Whiskers are a type of mammalian hair, with large size. In Mechanical Engineering, whiskers are tin filaments that grow on a material that has been processing by electroplating. Electroplating is used in the industry, because it serves for fine finishes, easy weldability or protect to corrosion. In our case, electroplating is made with tin and zamak (a zinz, magnesium, aluminum and copper alloy, widely used in industrial housings), to facilitate the weldability on the zamak (it is not weldable), and provide a well-finished product. Therefore, the knowledge of the phenomenon and the possible solutions was very important for us.


This phenomenon appeared on Zamak housings, because they must submit a tin plating to weld on the housings, because Zamak does not allow conventional welding.

A drawback happened when, after a large time stored material, this product,  a narrow-band amplifier with an 8MHz cavity filter, had a strong deviations in its electrical features. This phenomenon forced to do a new resetting of the filter. In this product, there were two separate settings: first, made during the assembly, and second, 24 hours from the first adjustment. After completing both settings, the cavity filter usually remained stable, but a third setting was recommended if the product was stored over 3 months (storage rotation).

However, along the product development, my R&D team discovered that the cavity filter was not stable and the failure of the selectivity and insertion losses grew along the time. Implying that, despite the third adjustment, could not ensure the filter stability. This failure meant that we could not ensure that the filter was stable in spite of third adjustment.

Tin whiskers growth

At first, the phenomenon looked like a failure in the electronic components, caused by a defective lot of capacitors. Then it became a new phenomenon for us: we had accidentally generated whiskers on tin surface.

As I said, whiskers are metal filament-like crystals, which grow on the surface of tin which covers the zamak housing. Crystals are so fine that they are very brittle when the hand is passed over the surface and melt when a short circuit current crosses through them, which it does not have to be very high. In this case, it reduced the cavity volume of the filter, and it changed its resonant frequency, moving the insertion response to higher frequencies.

When we start to study this phenomenon, we discovered that it had been known since the 40’s and even NASA studied deeply the phenomenon, so that part of the way was made: we verified that it was associated with the type of contact surface between the two materials and the thickness applied to the tin plating. Surface tension of the materials and storage temperature were involved, too. In summary, whiskers growth was ruled under the equations of PhD. Irina Boguslavsky and her collaborator Peter Bush:

h_1=k_1 \dfrac {\sigma}{R_W T}

h_2=k_2 \left( {\sigma}- \dfrac {k_3}{L_W} \right)^n

According to the experimental observations, both equations predicted rather accurately the whiskers growth which was observed in the tin layers. In these equations, σ represents the stress strength, related to the surface tension. LW is related to thickness of the surface bonding and n is a value, dependent on the displacement density and the temperature, T. The k1, k2 and k3 terms are constants which depend on the material properties and RW is the radius of the filament. The h1 and h2 terms refer to the filament growth where it has already happened in the bonding area (h1) and the time at which happens (h2).

Crecimiento del filamento de estaño a los 3 y a los 6 meses

Tin whisker growth at the 3rd and 6th month

In these equations, when LW decreases, h2 increases, because it is an exponential function with n>>1. Therefore, the plating thickness is one of the variables which can be controlled. In our case, this thickness had been decreased from 20μm to 6-8μm because the development incorporated a “F” plug-type, threading, instead of the former 9 ½mm DIN connector. Since the connectors were made in the molding manufacture and they were subsequently threaded, they were made before the tin plating. A 20μm tin plating did not allow that the connectors were threaded.

The σ term is related to the surface tension in the junction and depends only on the materials used. Studying with the plating manufacturer for different thicknesses, we verified that the expressions were consistent, since for larger thicknesses, the growth was always much higher than for smaller thicknesses, and there was always a tendency to grow, although it was lower in 20μm platings. Once the plating was made, the stress forces which were applied by the surface tension of zamak, “pushed” to the tin atoms outwards, to maintain the equilibrium conditions. Opposite to them, the surface tension of tin appeared. With less tin thickness, the forces applied at the contact surface were higher than the opposite forces on the tin surface, and with less tin thickness, internal forces which opposed to the surface forces were weaker, allowing the whisker growth outside.


One solution, that was provided from Lucent Technologies, was performing an intermediate nickel plating, between zinz surface and the tin plating.

Ni plating between Sn and Zn surfaces

Researchers from Lucent Tech., after several experiments, found that the growth of whiskers was eliminated significantly, to nearly zero values.

Crecimiento de ambos tipos de baño de estaño (brillante y con antimonio).

Growth in the two types of tin plating (bright tin and satin tin)

In the graphs, we can see that the growth of bright tin over a copper surface which has a similar performance to the zamak. It grows rapidly after 2 months. The growth slope is very high in bright tin. However, when it is applied an intermediate Ni layer, the growth is practically zero. For the satin tin, the growth slope happens after 4 months, and it shows a slightly lower slope. After applying the Ni layer, the growth is practically zero.

The thickness of the Ni plating could be between 1μm and 2μm, while the thickness of tin plating could be maintained around 8μm. Thus, the defective threading is avoided while the whiskers were removed. However, the process was quite expensive, so this option was discarded.

Therefore, we were confronting another problem: how to eliminate the phenomenon, which implied increasing the thickness of the tin plating on the zamak alloy, but also caused the defective in threading at “F” connector. A molding modification, to provide more material on the connector, was quite expensive and involved a larger modification time, having to include inserts. However, it was right to correct the whiskers.

Another problem was raised with the stored material and the material which was being manufactured. The stored material could not be reprocessed because it had been assembled and could not be plated again. The intermediate solution was to remove the tin crystals by cleaning with compressed air.

About the material in manufacturing process (non-plating pieces), a temporary solution was to replace the tin plating. Silver plating was applied. Silver is weldable and can be applied in very thin layers, keeping the features, but it has the disadvantage that its oxide shows a dirty and stained finish, affecting to the product esthetics.

Finally, in-depth study of the phenomenon laid down that increasing the tin thickness should be standard. Defective in threading should be removed by a tool, to make correctly the threading on the connector, and the mold modification could be made, by modifying the inserts of the threaded connectors, to get a 10-20μm plating which do not fill the threadings.


Tin whiskers is a little-known phenomenon. It happens at the microscopic level and seems to have only been studied by agencies and national research laboratories, with strong budgets and appropriate means for its observation.

In Spain, we have found few laboratories which study it. It happens preferably in the industry, caused by the handling of materials. This job was done by my R&D team, allowing us to acquire enough knowledge to correct and prevent it, as well as to avoid its occurrence again.

However, there are many items about it on the web, which allowed us to know, analyze its causes and possible solutions.


  1. H. Livingston, “GEB-0002: Reducing the Risk of Tin Whisker-Induced Failures in Electronic Equipment”; GEIA Engineering Bulletin, GEIA-GEB-0002, 2003
  2. B. D. Dunn, “Whisker formation on electronic materials”, Circuit World, vol. 2, no. 4, pp.32 -40 1976
  3. R. Diehl, “Significant characteristics of Tin and Tin-lead contact electrodeposits for electronic connectors”, Metal Finish, pp.37-42 1993
  4. D. Pinsky and E. Lambert, “Tin whisker risk mitigation for high-reliability systems integrators and designers”, Proc. 5th Int. Conf. Lead Free Electronic Components and Assemblies, 2004
  5. Chen Xu, Yun Zhang, C. Fan and J. Abys, “Understanding Whisker Phenomenon: Driving Force for Whisker Formation”, Proceedings of IPC/SMEMA Council APEX, 2002
  6. I. Boguslavsky and P. Bush, “Recrystallization Principles Applied to Whisker Growth in Tin”, Proceedings of IPC/SMEMA Council APEX, 2003

Estudio avanzado de los radioenlaces

Hablabamos en diciembre del año pasado del cálculo de radioenlaces. Habíamos puesto como modelos iniciales para dicho cálculo el del espacio libre (representado por la fórmula de Friis) y los modelos de Okumura y Okumura-Hata, que son modelos extrapolados de cálculos estadísticos realizados a través de mediciones reales en entornos urbanos. Sin embargo, estos modelos no incluyen la orografía del terreno, la obstrucción debida a los propios enlaces o fenómenos como la difracción. Estos fenómenos físicos son bastante complejos de analizar, pero cualquier radioenlace que los incluya tendrá más posibilidades de éxito que los que se realicen con el simple modelo del espacio libre o el de Okumura-Hata. En esta entrada estudiamos el modelo de Longley-Rice, basado en el modelo de tierra irregular, que data de los años 60 y que fue desarrollado debido a la que los EE.UU. estaban realizando un plan de asignación de frecuencias para la difusión de TV (Broadcast).


El modelo de Longley-Rice es un modelo de tierra irregular, conocido por las siglas ITM. Es un modelo de estudio de cobertura de radioenlaces, inicialmente pensado para la cobertura broadcast de TV, dentro del plan de asignación de frecuencias del espectro radioeléctrico.

El modelo se basa en la aplicación de los fenómenos físicos ya conocidos: atenuación en el espacio libre de Friis, elipsoides de Fresnel, difracción, trayectorias multicamino, etc., a los que se añade el efecto de la irregularidad de la Tierra. A partir de ese modelo, se realizan análisis estadísticos de cobertura que se plasman en algoritmos que permitan una predicción lo más atinada posible de esa cobertura.

Imagen de una Tierra con orografía irregular

La Tierra no es regular. Si añadimos al fenómeno de la curvatura terrestre el de la orografía, la propagación electromagnética se encuentra con muchos obstáculos. A frecuencias por debajo de los 30MHz, la emisión radiada suele ser bastante eficaz (las célebres emisoras de Onda Media y Onda Corta), llegando a muchas partes del planeta gracias a la reflexión en la ionosfera, permitiendo que lleguen a otras partes del planeta e incluso dar una vuelta completa. Son las bandas de transmisión de radio y de los radioaficionados, y por lo general es el propio planeta el repetidor.

En función de la banda, las frecuencias radiadas se verán favorecidas en la radioemisión, siendo la banda más baja (Onda Media) una banda nocturna (se ve más favorecida en alcance por la noche), y pasando a diurna hasta que los fenómenos de reflexión debidos a la ionosfera desaparecen y se vuelven caprichosos.

El modelo ITM cubre la banda de 20MHz÷20GHz y hasta 2000km, aunque se está extendiendo ya, debido a la necesidad de realizar radioenlaces a más alta frecuencia, hasta los 40GHz.

El modelo, que incluye los fenómenos electromagnéticos ya conocidos y los combina con una cartografía terrestre donde se incluyen los fenómenos urbanos, de bosque, orográficos y de obstáculos, permite, mediante un análisis estadístico, conocer las posibilidades de una cobertura realizada por un repetidor, estimando cuáles son los valores medios que se pueden llegar a tener en un receptor fijo y en uno móvil.

No obstante, el modelo, que nació en 1968, está en continua evolución, puesto que algunos resultados muestran diferencias con las medidas realizadas, por lo que se hace necesaria una combinación de diversos modelos para tener una estimación más realista.


Existen varias aplicaciones basadas en el modelo de Longley-Rice. Una de ellas, libre y muy sencilla de usar, está realizada por el ingeniero de RF canadiense Roger Coudé, denominada Radio Mobile. Con ella es posible cargar un mapa de una cierta zona, abarcando un determinado territorio, y establecer una red de radioenlaces en la que podamos estudiar la cobertura con cierta seguridad.

El software, de tipo freeware, establece la definición de los sistemas, del tipo de red, de la orografía del terreno, del entorno climático, del tipo de orografía del terreno. También permite la definición de las potencias emitidas por el transmisor y las recibidas por el receptor, así como las ganancias de antena y el tipo de antena utilizado.

Análisis de un enlace de radio punto a punto.

El software permite el análisis punto a punto con la transcripción de la orografía del terreno, representando, además, las elipsoides de Fresnel, y mostrando las contribuciones a las pérdidas en el espacio libre de las obstrucciones, los entornos urbanos y las zonas boscosas.

También es posible analizar redes punto-multipunto, topologías de tipo estrella o de tipo cluster.

Una de las cosas más interesantes del programa es la posibilidad de realizar sobre el mapa diagramas de cobertura, limitando los parámetros óptimos de la red y caracterizándola en función de la posición sobre el terreno, así como de obtener localizaciones favorecidas para obtener la mejor ubicación.

No obstante, tenemos que recordar que se trata de un simulador, y como todos los simuladores, tiene la eficiencia de la cantidad de datos que proporcionemos, y muchos de ellos no son de fácil modelización. Para ello, voy a estudiar un ejemplo que realicé hace unos años con un radioenlace que tuve que colocar en un camping de la Bretaña francesa, en Quimper.


En el año 2008 tuve que ir a instalar un radioenlace en el camping Port de Plaisance, en Quimper. Se trataba de una instalación destinada a emitir la TNT (Télévision Numérique Terrestre) dentro del entorno del camping, ya que la señal del repetidor llegaba con una señal ya muy baja a algunos de los bungalows del camping.

Parecía que se trataba de una instalación sencilla: el camping no tenía más de 700m de longitud, por lo que un repetidor de 500mW parecía más que suficiente para cubrir el terreno. El problema partía de la normativa de TNT en Francia exigía que cualquier repetidor tenía que ponerse en modo SFN (Single Frequency Network), por lo que había que emitir en el mismo canal que se recibía. No era posible realizar, pues, cambio de canalización.

Esta situación limitaba mucho la potencia de nuestro repetidor, ya que al emitir en la misma frecuencia y carecer de un sistema de cancelación de ecos (realimentación producida al acoplarse la frecuencia emitida en la antena de recepción del repetidor), había que disminuir el nivel de salida del repetidor para evitar oscilaciones.

El camping tenía una distribución que podemos ver en el siguiente mapa:


Camping “Port de Plaisance”

Por supuesto, el objetivo era cubrir todos los bungalows, y para ello utilizamos el modelo de espacio libre. La ubicación tanto de la antena de recepción como la de transmisión fueron definidas por la dirección del camping, así como la ubicación de los equipos, que serían colocados en unas dependencias a las que no podían acceder los clientes.

Atendiendo al modelo de cobertura del espacio libre, teníamos entre 70 y 80dB de pérdidas en las frecuencias de UHF en las que íbamos a emitir. Por tanto, el problema de la potencia quedaba resuelto, ya que con 50mW de emisión llegábamos perfectamente a cualquier punto del camping con una antena omnidireccional, con una ganancia del orden de 9dBi. De hecho, en el peor punto llegábamos con 57dBμV, 10dB más que los que se recomiendan como límite inferior para recibir una señal de TV COFDM correcta. Así que con la alegría de que íbamos a poner un repetidor en Francia, nos acercamos a Quimper a finales del invierno de 2008, a hacer la instalación y tomar las medidas.

El primer inconveniente con el que nos encontramos fue, precisamente, el problema de la realimentación. Ya sabíamos que podría ocurrir, pero las estimaciones calculadas y las reales nos mostraron que no podíamos sacar más de 75mW en el mejor de los casos, y con este nivel en algunas ocasiones el canal concreto se ponía a oscilar. El valor de 50mW era también algo optimista, aunque era un valor, en principio, seguro.

Otra de las cosas que no introdujimos en los cálculos era el gran número de ostáculos a los que se enfrentaba nuestro repetidor. Como buen camping situado en una zona tan húmeda como la Bretaña francesa, el terreno tenía abundante vegetación y arbolado, y en muchas ocasiones los árboles se topaban con el camino radioeléctrico como si fuesen un muro. No obstante, logramos colocar el repetidor y de las mediciones que hicimos, vimos que teníamos nivel de señal óptimo, aunque 6 o 7 dB inferior al que el modelo del espacio libre nos predecía.

Al cabo de dos meses, desde la dirección del camping nos telefonearon indicando que en muchos sitios del camping no se recibía la señal de TNT, y que los clientes se quejaban porque era un servicio ofertado por el camping y querían dicho servicio. Así que con los equipos en la mano, volvimos para estudiar “in situ” lo que ocurría.

A nuestra llegada, pudimos comprobar con estupor que las arboledas sin hojas de marzo se habían convertido en un frondoso bosque. Teniendo a mano las medidas realizadas, volvimos a hacer la comparativa y donde antes teníamos del orden de 50dBμV, ahora teníamos menos de 45dBμV, por lo que en algunos sitios la señal estaba pixelando continuamente o entraba a negro, dependiendo de la calidad del receptor. Un desastre, vamos.

Así que tuvimos que recurrir a reajustar el repetidor, teniendo en cuenta que no podíamos dar más de 75mW, si no queríamos que el canal oscilase. La dirección del camping tampoco permitía el cambio de canal, por lo que teníamos pocas opciones. Así que la solución fue buscar un punto de potencia de salida que permitiese la cobertura justa, e intentar buscar los lugares donde esta cobertura era mala, para intentar dar con una solución, que consistía en la instalación de un microrrepetidor de menos potencia.

Por tanto, ahí descubrí que el modelo del espacio libre era eso: del espacio libre. No era válido para realizar una estimación de cobertura para una instalación sobre un determinado terreno.


Hoy, después de 6 años y medio de aquella instalación, he hecho el análisis de la misma a través del software Radio Mobile y me he encontrado con que aquellos datos que tomé en su momento eran correctos, y que mi hipótesis inicial, presentada en el informe de la instalación, era acertada. Al justificar que la existencia de obstrucciones en el camping no me permitían una cobertura total, las conclusiones eran discutidas y tomadas como poco rigurosas.

De hecho, al tomar el peor punto de la red, que llamaremos Receptor 2, pude comprobar que en condiciones de obstrucción la señal, que en espacio libre estaba sobrada, estaba atenuada en 12dB más, lo que hacía que la señal cayese por debajo de la señal que habíamos puesto como límite, e incluso por debajo de la señal óptima.

Transmisión simulada en el punto peor del camping Port de Plaisance

Entonces, decidí hacer una simulación de la cobertura desde el repetidor, para ver cómo se distribuía la señal, y obtuve el siguiente plano de cobertura

Mapa de cobertura del camping “Port de Plaisance”. En rojo, fuera de cobertura. En amarillo, cobertura débil. En verde, buena cobertura.

donde pude comprobar, a partir del mapa de terreno que usa el programa, que había zonas internas de mala cobertura y que las zonas donde tenía una cobertura débil (que dependiendo de las condiciones climatológicas podía ser incluso mala), eran superiores a las que en principio me mostraba el modelo del espacio libre. Y que la zona en la que el modelo de espacio libre nos daba como peor, pero dentro de características, se ajustaba a los valores obtenidos en las medidas.


Si hubiese tenido este software de simulación en el momento de estudiar la instalación del repetidor en “Port de Plaisance”, para nada hubiese acudido a montar el repetidor si no tengo la cobertura garantizada. Incluso con el máximo nivel de 500mW la cobertura no estaba garantizada, con algunas zonas de sombra que no podríamos cubrir.


Cobertura con el máximo nivel de 500mW.

El programa me ha demostrado, pues, mucha utilidad para el cálculo de coberturas. Al menos, se obtienen cosas bastante más realistas que el optimismo inicial del modelo del espacio libre.


  1. P.L. Rice, “Transmission loss predictions for tropospheric communication circuits”, Volume I & II, National Bureau of Standards, Tech. Note 101
  2. A. G. Longley and P. L. Rice, “Prediction of tropospheric radio transmission loss over irregular terrain. A computer method-1968”, ESSA Tech. Rep. ERL 79-ITS 67, U.S. Government Printing Office, Washington, DC, July 1968