SHARENG Divulgación

Inicio » Análisis » El Control Automático de Ganancia: topología, funcionamiento y uso (II)

El Control Automático de Ganancia: topología, funcionamiento y uso (II)

En la entrada del mes pasado estudiábamos la filosofía de un amplificador con Control Automático de Ganancia. Para terminar este capítulo dedicado al AGC, vamos a estudiar la simulación del sistema usando la aplicación SIMULINK de MatLab, y dedicaremos un apartado a concretar el uso más habitual de este tipo de configuraciones.

DIAGRAMAS DE BLOQUES DE UN AGC EN SIMULINK

En primer lugar, vamos a recordar que el diagrama de bloques usual de un AGC es el siguiente

Diagrama de bloques de un AGC

Diagrama de bloques de un AGC

Es importante la traslación de este sistema a SIMULINK, para poder estudiar cómo funciona. Comenzamos por el VGA (amplificador controlado por tensión). En el apartado anterior comprobamos que la expresión que relaciona la tensión de salida con la tensión de entrada es una expresión definida por

img10

Expresión del VGA

por tanto, tenemos que construir un diagrama de bloques SIMULINK que realice esta expresión. El diagrama de bloques es

img1

Diagrama SIMULINK del VGA

Tenemos dos puertas de entrada: la puerta In1 es la puerta donde se aplicará VIN en unidades de magnitud, mientras que la entrada In2 es la puerta donde se aplicará VC, también en unidades de magnitud. Esta tensión VC pasa por un amplificador de ganancia -1 y por una función matemática 10u, para realizar la parte exponencial de la ganancia, que se multiplica mediante una función producto a la tensión de In1, correspondiente a VIN. Luego aplicamos un bloque Gain3, en el que proporcionamos la máxima ganancia de nuestro amplificador, que en este caso es 10. De este modo, nuestro amplificador tiene la siguiente expresión

img11

Expresión de la VGA a simular

VOUT, en unidades de magnitud, sale por Det a través de la salida Out2, mientras que por la salida Out1 sacamos VOUT en dB, ya que nos interesa más esa escala a la hora de realizar las medidas. La salida Det será utilizada para realizar la parte de la detección y aplicar un amplificador logarítmico.

El diagrama de bloques, entonces, queda como sigue

img2

Diagrama de bloques SIMULINK del AGC

Por un lado, tenemos Control Amp, que es nuestro VGA. La entrada, que se expresa en magnitud, entra en el amplificador y se lleva, a través de una conversión a dB, al Scope. La salida Out, que sale en dB, se lleva también al Scope.

La salida Det pasa por un detector de envolvente de ganancia unidad y un amplificador logarítmico de base 10. El resultado de esa operación se compara con el valor VREF, que es, en dB, el valor que queremos a la salida. Mediante el bloque dB to Mag se pasa VREF a unidades de magnitud.

El resultado se pasa por un integrador que tiene una constante de proporcionalidad 0,5. En el visualizador Control podemos estudiar la respuesta temporal de la salida del integrador, que nos proporcionará información acerca del tiempo que le lleva al AGC volver al estado nominal cuando haya un cambio en el valor de entrada.

La entrada está formada por los bloques In_dB (el valor nominal de entrada en dB) y dB_Step, en donde introduciremos el salto que se va a producir en el valor de entrada. Por ejemplo, en la figura tenemos un salto de 10dB, por lo que si el valor inicial de entrada In_dB es de 10dB, en el momento en que se produzca el salto tendremos 20dB, que el AGC tendrá que corregir.

El bloque dB to Mag with step es un bloque que nos proporcionará el valor de entrada en magnitud VIN, con el salto en dB en el tiempo que deseamos. Este bloque es

img3

Diagrama de bloques del dB to Mag with step

La entrada dB_Step se multiplica a un escalón retardado, para que el salto se produzca en ese momento, y la salida (que sigue estando expresada en dB) se suma a la entrada nominal dB_In, que es el valor inicial. Un bloque Gain (1/20) y un bloque 10u pasan los dB a magnitud, que es la que se introducirá en el amplificador.

PROCESO DE SIMULACIÓN

Vamos a proceder a la simulación de nuestro AGC. En primer lugar, vamos a ver cuál es la salida del amplificador cuando no tenemos salto.

img4

Respuesta del AGC cuando no hay variación en el valor de entrada (dB_Step=0)

Como podemos ver en la gráfica, cuando entramos con 10dB, el amplificador se va a su máxima ganancia (10dB+20dB de ganancia pasa a 30dB de nivel de salida). El AGC corrige la ganancia hasta que se obtienen los 15dB de VREF. Si cambiamos VREF a 20dB, el resultado en la salida es similar, pero se obtienen 20dB.

img5

Respuesta con Vref=20dB

Por tanto, queda comprobado que el amplificador está funcionando correctamente, por lo que aplicamos ahora los cambios en amplitud.

En primer lugar, introducimos un retardo en el bloque Step de dB to Mag with step de 15s. Esto quiere decir que la amplitud del amplificador cambiará a partir de la posición 15. Ahora introducimos un salto en dB_Step de 5dB, manteniendo la VREF en 15dB. El resultado es

img6

Respuesta del AGC a un incremento en la entrada de 5dB

Podemos ver que el amplificador ya se encuentra en estado estacionario a partir del instante 10, con 15dB de salida, y en el instante 15 la entrada sube 5 dB. El amplificador incrementa su salida a 20dB, pero el AGC realimenta la ganancia hasta que en el instante 25 volvemos a tener 15dB.

Apliquemos ahora la misma variación, pero negativa, disminuyendo el valor de entrada en 5dB. El resultado es

img7

Respuesta del AGC a una disminución en la entrada de 5dB

Donde vemos que el nivel de entrada, en el instante 15, pasa de 10dB a 5dB, provocando que el nivel de salida caiga a 10dB. Entonces comienza a actuar el AGC hasta que en el instante 25 se estabiliza y vuelve a los 15dB de salida.

¿Cómo es la señal de Control? En esta última gráfica, podemos comprobar que la señal de Control es

img8

Respuesta del control Vc

Por tanto, podemos ver el cambio que se produce en la ganancia, cuando VC pasa de 0,75 a 0,5 para estabilizar el nivel de salida.

Este AGC es muy sencillo. El tiempo de respuesta del AGC venía dado por la expresiónτ=1/α·A cuando el valor de la amplitud sube o cae α·A/e, donde A era el factor multiplicador del integrador y α la constante de proporcionalidad de la parte exponencial de la ganancia. Por tanto tenemos que t vale, con los números que hemos utilizado, 2.

Este valor se corresponde al instante en que la envolvente cae 0,18, que en la gráfica anterior se corresponde a un valor aproximado de 0,57. Podemos comprobar que ese valor cae en una posición inferior a la mitad del intervalo entre 15 y 20, por lo que los números son coherentes.

En esta simulación no hemos puesto limitación al valor del salto. Esto significa que si sobrepasamos el rango del AGC podremos tener valores de VC incoherentes. Pero dentro del rango del AGC, podemos estudiar el comportamiento de los integradores y de la respuesta del VGA de forma temporal, si introducimos dichos datos en el sistema.

USO HABITUAL DE LOS AGC

Por último, y para cerrar esta entrada correspondiente a los AGC, vamos a comentar brevemente el uso de los mismos en los equipos de telecomunicaciones.

Por lo general, cuando tenemos comunicación radiada a través del espacio libre, podemos encontrarnos con una gran diversidad de valor de campo eléctrico, que, al acoplarse a la antena, proporciona diferentes niveles de señal a la entrada de un receptor. Y las variaciones pueden ser del orden de decenas de dB.

Los receptores suelen tener un margen dinámico limitado. Por debajo de un determinado valor, el ruido interfiere en la señal dejándola irrecuperable, y por encima de un determinado valor, se produce la intermodulación, que genera señales indeseadas que también pueden hacer irrecuperable la señal. Se hace, por tanto, necesario que exista un rango dinámico controlado por el propio equipo para que absorba las variaciones propias de la señal de entrada. Es aquí donde entra el AGC.

Si observamos el diagrama de bloques de un equipo receptor, tendremos que los bloques principales son

img9

Diagrama de bloques típico de un receptor de telecomunicaciones

El primer amplificador, que está antes del mezclador de FI, es un amplificador controlado por tensión que realiza el AGC para garantizar que en el receptor (en este caso un demodulador I-Q) el nivel sea el óptimo.

Hay ocasiones que el propio receptor tiene un rango de AGC, que combinado con el rango del amplificador de entrada incrementa el rango dinámico del receptor.

Los AGC, aunque menos habituales, también se suelen usar en transmisión, aunque en este caso lo más habitual es tomar una muestra del nivel de salida y pasarlo por un ADC para que a través de un microcontrolador se corrija el nivel de ataque al amplificador, sin que el amplificador esté controlado por tensión.

CONCLUSIONES

Con esta entrada damos por cerrado el capítulo del estudio de los AGC y su uso. La mayoría de los equipos de telecomunicaciones tienen, hoy día AGC digitales que controlan las variaciones de la señal de entrada a través de los microprocesadores. Sin embargo, la gran ventaja del AGC analógico clásico es la rapidez de su respuesta y la alta estabilidad que se obtiene, ya que corrige un sistema exponencial que, a la hora de ser cuantificado, puede necesitar al menos de 8 bits para controlarlo y obtener un buen margen de estabilidad de nivel en el AGC. Su mayor inconveniente suele ser el espacio, la variación del margen con la temperatura y la necesidad de obtener una muestra de nivel lo suficientemente elevada para que el detector no introduzca ruido.

También hemos podido comprobar la utilidad de una herramienta como SIMULINK para analizar este tipo de sistemas, que nos puede proporcionar información de primera mano para comprobar si el sistema es viable.

REFERENCIAS

  1. Benjamin C. Kuo; “Automatic Control Systems”; 2nd ed.; Englewood Cliffs, NJ; Prentice Hall; 1975
  2. Pere Matí i Puig; “Subsistemas de radiocomunicaciones analógicos”;Universitat Oberta de Catalunya;2010
Anuncios

Responder

Introduce tus datos o haz clic en un icono para iniciar sesión:

Logo de WordPress.com

Estás comentando usando tu cuenta de WordPress.com. Cerrar sesión / Cambiar )

Imagen de Twitter

Estás comentando usando tu cuenta de Twitter. Cerrar sesión / Cambiar )

Foto de Facebook

Estás comentando usando tu cuenta de Facebook. Cerrar sesión / Cambiar )

Google+ photo

Estás comentando usando tu cuenta de Google+. Cerrar sesión / Cambiar )

Conectando a %s

A %d blogueros les gusta esto: